Question
upstudy study bank question image url

Two vectors are given by \( \vec{a}=1.8 \hat{i}+1.6 \hat{j} \) and \( \vec{b}=8.8 \hat{i}+7.2 \hat{j} \). Find (a) \( |\vec{a} \times \vec{b}|,(\mathrm{b}) \vec{a} \cdot \vec{b},(\mathrm{c})(\vec{a}+\vec{b}) \cdot \vec{b} \), and (d) the component of \( \vec{a} \) along the direction of \( \vec{b} \) ?

Ask by Powers Hilton. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

(a) \( |\vec{a} \times \vec{b}| = 1.12 \) (b) \( \vec{a} \cdot \vec{b} = 27.36 \) (c) \( (\vec{a} + \vec{b}) \cdot \vec{b} = 156.64 \) (d) The component of \( \vec{a} \) along \( \vec{b} \) is approximately 2.41 units.

Solution

Let's analyze each part step-by-step using the given vectors: \[ \vec{a} = 1.8\, \hat{i} + 1.6\, \hat{j} \quad \text{and} \quad \vec{b} = 8.8\, \hat{i} + 7.2\, \hat{j} \] ### (a) Magnitude of the Cross Product \( |\vec{a} \times \vec{b}| \) In two dimensions, the cross product of \(\vec{a}\) and \(\vec{b}\) is a scalar given by: \[ \vec{a} \times \vec{b} = a_x b_y - a_y b_x \] Substituting the given components: \[ \vec{a} \times \vec{b} = (1.8)(7.2) - (1.6)(8.8) = 12.96 - 14.08 = -1.12 \] The magnitude is: \[ |\vec{a} \times \vec{b}| = | -1.12 | = 1.12 \] **Answer:** \( |\vec{a} \times \vec{b}| = 1.12 \) --- ### (b) Dot Product \( \vec{a} \cdot \vec{b} \) The dot product is calculated as: \[ \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y \] Substituting the given components: \[ \vec{a} \cdot \vec{b} = (1.8)(8.8) + (1.6)(7.2) = 15.84 + 11.52 = 27.36 \] **Answer:** \( \vec{a} \cdot \vec{b} = 27.36 \) --- ### (c) Dot Product \( (\vec{a} + \vec{b}) \cdot \vec{b} \) First, find \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (1.8 + 8.8)\, \hat{i} + (1.6 + 7.2)\, \hat{j} = 10.6\, \hat{i} + 8.8\, \hat{j} \] Now, calculate the dot product: \[ (\vec{a} + \vec{b}) \cdot \vec{b} = (10.6)(8.8) + (8.8)(7.2) = 93.28 + 63.36 = 156.64 \] **Answer:** \( (\vec{a} + \vec{b}) \cdot \vec{b} = 156.64 \) --- ### (d) Component of \( \vec{a} \) Along the Direction of \( \vec{b} \) The component of \(\vec{a}\) along \(\vec{b}\) is given by: \[ \text{Component} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] First, compute \( |\vec{b}| \): \[ |\vec{b}| = \sqrt{8.8^2 + 7.2^2} = \sqrt{77.44 + 51.84} = \sqrt{129.28} \approx 11.37 \] Now, use the previously calculated dot product: \[ \text{Component} = \frac{27.36}{11.37} \approx 2.406 \] Rounding to two decimal places: \[ \text{Component} \approx 2.41 \] **Answer:** The component of \( \vec{a} \) along \( \vec{b} \) is approximately 2.41 units.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the given problem, let's tackle each part step by step. ### (a) Magnitude of \( \vec{a} \times \vec{b} \) The cross product \( \vec{a} \times \vec{b} \) in two dimensions is defined as: \[ |\vec{a} \times \vec{b}| = |a_1 b_2 - a_2 b_1| \] where \( \vec{a} = a_1 \hat{i} + a_2 \hat{j} \) and \( \vec{b} = b_1 \hat{i} + b_2 \hat{j} \). For our vectors: - \( a_1 = 1.8, \, a_2 = 1.6 \) - \( b_1 = 8.8, \, b_2 = 7.2 \) Calculating the cross product magnitude: \[ |\vec{a} \times \vec{b}| = |1.8 \cdot 7.2 - 1.6 \cdot 8.8| = |12.96 - 14.08| = |-1.12| = 1.12 \] ### (b) Dot Product \( \vec{a} \cdot \vec{b} \) The dot product of two vectors is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 \] Substituting the values: \[ \vec{a} \cdot \vec{b} = 1.8 \cdot 8.8 + 1.6 \cdot 7.2 = 15.84 + 11.52 = 27.36 \] ### (c) Dot Product \( (\vec{a} + \vec{b}) \cdot \vec{b} \) First, calculate \( \vec{a} + \vec{b} \): \[ \vec{a} + \vec{b} = (1.8 + 8.8) \hat{i} + (1.6 + 7.2) \hat{j} = 10.6 \hat{i} + 8.8 \hat{j} \] Now calculate the dot product: \[ (\vec{a} + \vec{b}) \cdot \vec{b} = (10.6 \hat{i} + 8.8 \hat{j}) \cdot (8.8 \hat{i} + 7.2 \hat{j}) = 10.6 \cdot 8.8 + 8.8 \cdot 7.2 = 93.68 + 63.36 = 157.04 \] ### (d) Component of \( \vec{a} \) along the direction of \( \vec{b} \) The component of \( \vec{a} \) along \( \vec{b} \) is calculated using: \[ \text{Component of } \vec{a} \text{ along } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] First, find \( |\vec{b}| \): \[ |\vec{b}| = \sqrt{(8.8)^2 + (7.2)^2} = \sqrt{77.44 + 51.84} = \sqrt{129.28} \approx 11.36 \] Now substitute back: \[ \text{Component} = \frac{27.36}{11.36} \approx 2.41 \] ### Final Results: (a) \( |\vec{a} \times \vec{b}| = 1.12 \) (b) \( \vec{a} \cdot \vec{b} = 27.36 \) (c) \( (\vec{a} + \vec{b}) \cdot \vec{b} = 157.04 \) (d) The component of \( \vec{a} \) along \( \vec{b} \approx 2.41 \).

Related Questions

Latest Physics Questions

27. กำหนดให้ ความเร งโน้มถ่วงที่พื้นผิวดาวเคราะห์ A เท่ากับ 3 เมตรต่อวินาที \( { }^{2} \) ความเ งโน้มถ่วงที่พื้นคิวดาวเคราะห์ B เท่ากับ 1 เมตรต่อวินาที \( { }^{2} \) ถ้าชั่งน้ำหนักของวัง จมวล 2 กิโลกรัม บนพื้ผิวดาวเคราะพ์ทั้งสอง น้ำหนักของวัตฮุ แ ดาวดวงใด มีค่ามากกว่ากัน เส. มากกว่ากันเท่าใด 1. น้ำหนักของวัตร บนดาวเคราะห์ \( A \) มากกว่า และมากกว่า 2 นิวตัน 2. นำหนักของวัตกบาเดาวเดราะห์ A มากกว่า และมากกว่า 4 นิวตัน 3. นำหนักของวัต؟ แนดาวเตราะห์ \( B \) มากกว่า และมากกว่า 2 นิวตัน 4. น้ำหนักของวัตร นนดาวเคราะห์ \( B \) มากกว่า เะละมากกว่า 4 นิวตัน 5. น้ำหนักของวัตก บนตาวเคราะห์ A และ B เท่ากัน
Physics Thailand Jan 24, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy