Two vectors are given by \( \vec{a}=1.8 \hat{i}+1.6 \hat{j} \) and \( \vec{b}=8.8 \hat{i}+7.2 \hat{j} \). Find (a) \( |\vec{a} \times \vec{b}|,(\mathrm{b}) \vec{a} \cdot \vec{b},(\mathrm{c})(\vec{a}+\vec{b}) \cdot \vec{b} \), and (d) the component of \( \vec{a} \) along the direction of \( \vec{b} \) ?
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the given problem, let's tackle each part step by step. ### (a) Magnitude of \( \vec{a} \times \vec{b} \) The cross product \( \vec{a} \times \vec{b} \) in two dimensions is defined as: \[ |\vec{a} \times \vec{b}| = |a_1 b_2 - a_2 b_1| \] where \( \vec{a} = a_1 \hat{i} + a_2 \hat{j} \) and \( \vec{b} = b_1 \hat{i} + b_2 \hat{j} \). For our vectors: - \( a_1 = 1.8, \, a_2 = 1.6 \) - \( b_1 = 8.8, \, b_2 = 7.2 \) Calculating the cross product magnitude: \[ |\vec{a} \times \vec{b}| = |1.8 \cdot 7.2 - 1.6 \cdot 8.8| = |12.96 - 14.08| = |-1.12| = 1.12 \] ### (b) Dot Product \( \vec{a} \cdot \vec{b} \) The dot product of two vectors is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 \] Substituting the values: \[ \vec{a} \cdot \vec{b} = 1.8 \cdot 8.8 + 1.6 \cdot 7.2 = 15.84 + 11.52 = 27.36 \] ### (c) Dot Product \( (\vec{a} + \vec{b}) \cdot \vec{b} \) First, calculate \( \vec{a} + \vec{b} \): \[ \vec{a} + \vec{b} = (1.8 + 8.8) \hat{i} + (1.6 + 7.2) \hat{j} = 10.6 \hat{i} + 8.8 \hat{j} \] Now calculate the dot product: \[ (\vec{a} + \vec{b}) \cdot \vec{b} = (10.6 \hat{i} + 8.8 \hat{j}) \cdot (8.8 \hat{i} + 7.2 \hat{j}) = 10.6 \cdot 8.8 + 8.8 \cdot 7.2 = 93.68 + 63.36 = 157.04 \] ### (d) Component of \( \vec{a} \) along the direction of \( \vec{b} \) The component of \( \vec{a} \) along \( \vec{b} \) is calculated using: \[ \text{Component of } \vec{a} \text{ along } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] First, find \( |\vec{b}| \): \[ |\vec{b}| = \sqrt{(8.8)^2 + (7.2)^2} = \sqrt{77.44 + 51.84} = \sqrt{129.28} \approx 11.36 \] Now substitute back: \[ \text{Component} = \frac{27.36}{11.36} \approx 2.41 \] ### Final Results: (a) \( |\vec{a} \times \vec{b}| = 1.12 \) (b) \( \vec{a} \cdot \vec{b} = 27.36 \) (c) \( (\vec{a} + \vec{b}) \cdot \vec{b} = 157.04 \) (d) The component of \( \vec{a} \) along \( \vec{b} \approx 2.41 \).