Question
f \( x-\frac{1}{x}=4 \), prove that \( x^{2}+\frac{1}{x^{2}}=18 \)
Ask by Ruiz Little. in Bangladesh
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( x^{2} + \frac{1}{x^{2}} = 18 \)
Solution
To prove that \( x^{2} + \frac{1}{x^{2}} = 18 \) given that \( x - \frac{1}{x} = 4 \), follow these steps:
1. **Start with the given equation:**
\[
x - \frac{1}{x} = 4
\]
2. **Square both sides of the equation:**
\[
\left( x - \frac{1}{x} \right)^{2} = 4^{2}
\]
3. **Expand the left side using the identity \((a - b)^2 = a^2 - 2ab + b^2\):**
\[
x^{2} - 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^{2}} = 16
\]
4. **Simplify the middle term:**
\[
x^{2} - 2 + \frac{1}{x^{2}} = 16
\]
5. **Combine like terms:**
\[
x^{2} + \frac{1}{x^{2}} - 2 = 16
\]
6. **Add 2 to both sides to isolate \( x^{2} + \frac{1}{x^{2}} \):**
\[
x^{2} + \frac{1}{x^{2}} = 16 + 2
\]
\[
x^{2} + \frac{1}{x^{2}} = 18
\]
**Conclusion:**
Given that \( x - \frac{1}{x} = 4 \), it follows that \( x^{2} + \frac{1}{x^{2}} = 18 \).
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To solve the problem, we start with the given equation: \[ x - \frac{1}{x} = 4 \] We square both sides to find \( x^2 + \frac{1}{x^2} \): \[ \left( x - \frac{1}{x} \right)^2 = 4^2 \] This expands to: \[ x^2 - 2x \cdot \frac{1}{x} + \frac{1}{x^2} = 16 \] Simplifying further: \[ x^2 - 2 + \frac{1}{x^2} = 16 \] Now, adding 2 to both sides gives: \[ x^2 + \frac{1}{x^2} = 16 + 2 = 18 \] Thus, we have: \[ x^2 + \frac{1}{x^2} = 18 \] which completes the proof.