Question
upstudy study bank question image url

\( \left. \begin{array} { l } { x ^ { 2 } + 16 x + 64 } \\ { x ^ { 2 } - 10 x + 24 = } \end{array} \right. \)

Ask by Potter Hamilton. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son: 1. \( x = -8 \) 2. \( x = 4 \) y \( x = 6 \)

Solution

Claro, resolveré las ecuaciones cuadráticas proporcionadas. ### 1. Ecuación: \( x^{2} + 16x + 64 = 0 \) **Paso 1: Intentar factorizar** Buscamos dos números que multiplicados den \( +64 \) y sumados den \( +16 \). Es evidente que \( 8 \) y \( 8 \) cumplen estas condiciones. \[ x^{2} + 16x + 64 = (x + 8)(x + 8) = (x + 8)^2 = 0 \] **Paso 2: Resolver la ecuación factorizada** \[ (x + 8)^2 = 0 \implies x + 8 = 0 \implies x = -8 \] **Solución:** \( x = -8 \) --- ### 2. Ecuación: \( x^{2} - 10x + 24 = 0 \) **Paso 1: Factorizar la ecuación** Buscamos dos números que multiplicados den \( +24 \) y sumados den \( -10 \). Los números \( -4 \) y \( -6 \) cumplen estas condiciones. \[ x^{2} - 10x + 24 = (x - 4)(x - 6) = 0 \] **Paso 2: Resolver las ecuaciones factorizadas** \[ x - 4 = 0 \implies x = 4 \] \[ x - 6 = 0 \implies x = 6 \] **Soluciones:** \( x = 4 \) y \( x = 6 \) --- ### Resumen de las soluciones: - Para \( x^{2} + 16x + 64 = 0 \), la solución es \( x = -8 \). - Para \( x^{2} - 10x + 24 = 0 \), las soluciones son \( x = 4 \) y \( x = 6 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's factor each quadratic equation separately, starting with \( x^2 + 16x + 64 \). This can be rewritten as \( (x + 8)^2 \) since it’s a perfect square trinomial. Now, for the equation \( x^2 - 10x + 24 \), we look for two numbers that multiply to 24 and add up to -10. Those numbers are -6 and -4, so it can be factored as \( (x - 6)(x - 4) \). In summary, the factorizations are: 1. \( x^2 + 16x + 64 = (x + 8)^2 \) 2. \( x^2 - 10x + 24 = (x - 6)(x - 4) \)

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy