Question
upstudy study bank question image url

\( y u _ { x } - x u _ { y } = y ^ { 2 } - x ^ { 2 } , \quad u ( 0 , y ) = \frac { 1 } { y ^ { 2 } } \)

Ask by Summers Schmidt. in Azerbaijan
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( u(x, y) = x y + \frac{1}{x^{2} + y^{2}} \)

Solution

Verilən tənlik və ilkin şərt: \[ y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = y^{2} - x^{2}, \quad u(0, y) = \frac{1}{y^{2}} \] Bu birinci qaydalı xətti hissəvi diferensial tənlikdir. Həlli üçün xarakteristik metoddan istifadə edəcəyik. **Xarakteristik Tənliklər:** \[ \frac{dx}{ds} = y, \quad \frac{dy}{ds} = -x, \quad \frac{du}{ds} = y^{2} - x^{2} \] İlkin şərtlərə görə, \( s = 0 \) nöqtəsində: \[ x(0) = 0, \quad y(0) = y_0, \quad u(0) = \frac{1}{y_0^{2}} \] **Xarakteristik Xəttlərin Tapılması:** 1. **\( x(s) \) və \( y(s) \) funksiyalarının tapılması:** Hər iki tənliyi birləşdirərək: \[ \frac{d^2 x}{ds^2} = \frac{d y}{ds} = -x \] Bu harmonik oscillator tənliyidir və ümumi həlli: \[ x(s) = A \cos s + B \sin s \] \[ y(s) = \frac{dx}{ds} = -A \sin s + B \cos s \] İlkin şərtləri tətbiq edərək: \[ x(0) = 0 \Rightarrow A = 0 \] \[ y(0) = y_0 \Rightarrow B = y_0 \] Beləliklə, \[ x(s) = y_0 \sin s \] \[ y(s) = y_0 \cos s \] 2. **\( u(s) \) funksiyasının tapılması:** \[ \frac{du}{ds} = y^2 - x^2 = y_0^2 \cos^2 s - y_0^2 \sin^2 s = y_0^2 \cos(2s) \] İnteqrasiya edərək: \[ u(s) = \frac{1}{y_0^{2}} + y_0^2 \cdot \frac{\sin(2s)}{2} \] Sadələşdirərək: \[ u(s) = \frac{1}{x^2 + y^2} + x y \] **Nəticə:** Beləliklə, tənliyin həlli: \[ u(x, y) = x y + \frac{1}{x^{2} + y^{2}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the given partial differential equation, we can use the method of characteristics. This technique involves finding curves along which the PDE becomes an ordinary differential equation (ODE). By parameterizing the curves with \( s \) and expressing \( x \) and \( y \) as functions of \( s \), we: 1. Establish that the characteristics satisfy the following system: \[ \frac{dx}{ds} = y, \quad \frac{dy}{ds} = -x, \quad \frac{du}{ds} = y^2 - x^2. \] 2. Also, use the initial condition \( u(0, y) = \frac{1}{y^2} \) to find the values along the characteristic curves originating from the line \( x = 0 \). This system allows us to solve for \( x(s) \), \( y(s) \), and \( u(s) \) to find a solution to the PDE. If you prefer a fun diversion, imagine being a detective solving a mystery where \( x \) and \( y \) are suspects, and \( u \) is the lead investigator chasing clues. You’ll follow their movements (characteristics) through an intricate plot (equation) until you unveil the final resolution (solution to \( u(x, y) \)). The journey brings twists and turns, but each step gets you closer to unraveling the mystery! Additionally, similar PDEs often arise in physics, especially when examining fluid dynamics or electromagnetic fields. Understanding how to develop solutions through the method of characteristics translates to grasping fundamental principles across various scientific fields. Mastering this technique opens up a world of applications, allowing you to tackle real-world problems where rapid changes occur, like wave patterns or heat distribution!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy