Question

2. a) Express \( \frac{\sqrt{3}+1}{\sqrt{3}-1}+\sqrt{3}-1 \) in the form \( a+b \sqrt{3} \) where \( a \) and \( b \) are rational numbers. b) Express \( \frac{5}{3-2 \sqrt{3}} \) in the form \( a+b \sqrt{3} \) where \( a \) and \( b \) are rational numbers.

Ask by Clarke Clark. in Zambia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \(1 + 2\sqrt{3}\) b) \(-5 - \frac{10}{3}\sqrt{3}\)

Solution

Let's solve each part step by step. ### Problem 2.a) **Express \( \frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 \) in the form \( a + b\sqrt{3} \):** 1. **Rationalize the first term:** \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - 1^2} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] 2. **Add the remaining terms:** \[ (2 + \sqrt{3}) + (\sqrt{3} - 1) = 2 - 1 + 2\sqrt{3} = 1 + 2\sqrt{3} \] **Answer for part a:** \[ 1 + 2\sqrt{3} \] ### Problem 2.b) **Express \( \frac{5}{3 - 2\sqrt{3}} \) in the form \( a + b\sqrt{3} \):** 1. **Rationalize the denominator:** \[ \frac{5}{3 - 2\sqrt{3}} \times \frac{3 + 2\sqrt{3}}{3 + 2\sqrt{3}} = \frac{5(3 + 2\sqrt{3})}{9 - 12} = \frac{15 + 10\sqrt{3}}{-3} = -5 - \frac{10}{3}\sqrt{3} \] **Answer for part b:** \[ -5 - \frac{10}{3}\sqrt{3} \] **Final Answers:** a) \(1 + 2\,\sqrt{3}\) b) \(-5 - \dfrac{10}{3}\, \sqrt{3}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To tackle part a), we can start by rationalizing the expression \( \frac{\sqrt{3}+1}{\sqrt{3}-1} \). This is done by multiplying the numerator and the denominator by the conjugate of the denominator, \( \sqrt{3}+1 \): \[ \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{3 - 1} = \frac{3 + 2\sqrt{3} + 1}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] Now, adding \( \sqrt{3} - 1 \): \[ (2 + \sqrt{3}) + (\sqrt{3} - 1) = 2 + 2\sqrt{3} - 1 = 1 + 2\sqrt{3} \] So, the final form is: **Part a**: \( 1 + 2\sqrt{3} \). For part b), we rationalize the denominator of \( \frac{5}{3 - 2\sqrt{3}} \) by multiplying by the conjugate \( 3 + 2\sqrt{3} \): \[ \frac{5(3 + 2\sqrt{3})}{(3 - 2\sqrt{3})(3 + 2\sqrt{3})} = \frac{15 + 10\sqrt{3}}{9 - 12} = \frac{15 + 10\sqrt{3}}{-3} = -5 - \frac{10}{3}\sqrt{3} \] So, the final form is: **Part b**: \( -5 - \frac{10}{3}\sqrt{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy