Question

1. (a) Rationalize the denominator of each of the following: (i) \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \) (ii) \( \frac{x}{x+\sqrt{y}} \) (iii) \( \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \) (v) \[ \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} \] (vi) \( \frac{5}{3-2 \sqrt{3}} \) (b) Rationalize the numerator in each of the following: (i) \( \frac{\sqrt{5+h}-3}{h} \) (ii) \( \frac{\sqrt{3}+\sqrt{5}}{7} \) (iii) \( \sqrt{x^{2}+1}-x \)

Ask by Malone Dickson. in Zambia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the rationalized forms: 1. **Rationalized Denominators:** - (i) \( \frac{6 - \sqrt{6}}{12} \) - (ii) \( \frac{x^{2} - x\sqrt{y}}{x^{2} - y} \) - (iii) \( \frac{2x^{2} - 2\sqrt{x^{2} - 9} \times x - 9}{9} \) - (iv) \( \frac{1}{\sqrt{6} - \sqrt{2} + \sqrt{3} - 1} \) - (v) \( -\frac{15 + 10\sqrt{3}}{3} \) 2. **Rationalized Numerators:** - (i) \( \frac{h - 4}{h(\sqrt{5 + h} + 3)} \) - (ii) \( \frac{-2}{7(\sqrt{3} - \sqrt{5})} \) - (iii) \( \frac{1}{\sqrt{x^{2} + 1} + x} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\sqrt{x^{2}+1}-x\) Calculate or simplify the expression \( (\sqrt(3)+\sqrt(5))/7 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\sqrt{3}+\sqrt{5}\right)}{7}\) - step1: Remove the parentheses: \(\frac{\sqrt{3}+\sqrt{5}}{7}\) Calculate or simplify the expression \( (\sqrt(5+h)-3)/h \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\sqrt{5+h}-3\right)}{h}\) - step1: Remove the parentheses: \(\frac{\sqrt{5+h}-3}{h}\) Calculate or simplify the expression \( x/(x+\sqrt(y)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x+\sqrt{y}\right)}\) - step1: Remove the parentheses: \(\frac{x}{x+\sqrt{y}}\) - step2: Simplify: \(\frac{\left(x-\sqrt{y}\right)x}{x^{2}-y}\) - step3: Multiply the terms: \(\frac{x^{2}-x\sqrt{y}}{x^{2}-y}\) Calculate or simplify the expression \( 5/(3-2*\sqrt(3)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{5}{\left(3-2\sqrt{3}\right)}\) - step1: Remove the parentheses: \(\frac{5}{3-2\sqrt{3}}\) - step2: Multiply by the Conjugate: \(\frac{5\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}\) - step3: Multiply the numbers: \(\frac{5\left(3+2\sqrt{3}\right)}{-3}\) - step4: Multiply the numbers: \(\frac{15+10\sqrt{3}}{-3}\) - step5: Calculate: \(-\frac{15+10\sqrt{3}}{3}\) Calculate or simplify the expression \( (2*\sqrt(3)-\sqrt(2))/(4*\sqrt(3)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2\sqrt{3}-\sqrt{2}\right)}{\left(4\sqrt{3}\right)}\) - step1: Remove the parentheses: \(\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}}\) - step2: Multiply by the Conjugate: \(\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{4\sqrt{3}\times \sqrt{3}}\) - step3: Multiply the numbers: \(\frac{6-\sqrt{6}}{4\sqrt{3}\times \sqrt{3}}\) - step4: Multiply the numbers: \(\frac{6-\sqrt{6}}{12}\) Calculate or simplify the expression \( 1/((\sqrt(2)+1)*(\sqrt(3)-1)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{\left(\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\right)}\) - step1: Remove the parentheses: \(\frac{1}{\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)}\) - step2: Multiply the numbers: \(\frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1}\) Calculate or simplify the expression \( (x-\sqrt(x^2-9))/(x+\sqrt(x^2-9)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-\sqrt{x^{2}-9}\right)}{\left(x+\sqrt{x^{2}-9}\right)}\) - step1: Remove the parentheses: \(\frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}}\) - step2: Simplify: \(\frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9}\) Let's rationalize the denominators and numerators step by step for the given expressions. ### (a) Rationalizing the Denominator #### (i) \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \) To rationalize the denominator, we can simplify the expression: \[ \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} = \frac{6 - \sqrt{6}}{12} \] #### (ii) \( \frac{x}{x+\sqrt{y}} \) To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{x}{x+\sqrt{y}} \cdot \frac{x-\sqrt{y}}{x-\sqrt{y}} = \frac{x^{2}-x\sqrt{y}}{x^{2}-y} \] #### (iii) \( \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \) Multiply by the conjugate: \[ \frac{x-\sqrt{x^{2}-9}}{x+\sqrt{x^{2}-9}} \cdot \frac{x-\sqrt{x^{2}-9}}{x-\sqrt{x^{2}-9}} = \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9} \] #### (iv) \( \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} \) Multiply by the conjugate of the denominator: \[ \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} = \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1} \] #### (v) \( \frac{5}{3-2 \sqrt{3}} \) Multiply by the conjugate: \[ \frac{5}{3-2 \sqrt{3}} \cdot \frac{3+2\sqrt{3}}{3+2\sqrt{3}} = -\frac{15+10\sqrt{3}}{3} \] ### (b) Rationalizing the Numerator #### (i) \( \frac{\sqrt{5+h}-3}{h} \) This expression is already in a suitable form for rationalization, but we can multiply by the conjugate: \[ \frac{\sqrt{5+h}-3}{h} \cdot \frac{\sqrt{5+h}+3}{\sqrt{5+h}+3} = \frac{5+h-9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)} \] #### (ii) \( \frac{\sqrt{3}+\sqrt{5}}{7} \) Multiply by the conjugate: \[ \frac{\sqrt{3}+\sqrt{5}}{7} \cdot \frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})} \] #### (iii) \( \sqrt{x^{2}+1}-x \) Multiply by the conjugate: \[ \sqrt{x^{2}+1}-x \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x} = \frac{(x^{2}+1)-x^{2}}{\sqrt{x^{2}+1}+x} = \frac{1}{\sqrt{x^{2}+1}+x} \] ### Summary of Results 1. **Rationalized Denominators:** - (i) \( \frac{6-\sqrt{6}}{12} \) - (ii) \( \frac{x^{2}-x\sqrt{y}}{x^{2}-y} \) - (iii) \( \frac{2x^{2}-2\sqrt{x^{2}-9}\times x-9}{9} \) - (iv) \( \frac{1}{\sqrt{6}-\sqrt{2}+\sqrt{3}-1} \) - (v) \( -\frac{15+10\sqrt{3}}{3} \) 2. **Rationalized Numerators:** - (i) \( \frac{h-4}{h(\sqrt{5+h}+3)} \) - (ii) \( \frac{-2}{7(\sqrt{3}-\sqrt{5})} \) - (iii) \( \frac{1}{\sqrt{x^{2}+1}+x} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To start off, rationalizing the denominator is a crucial algebraic technique that simplifies expressions, allowing the denominator to achieve a more manageable form. This process gets rid of square roots or other irrational numbers in the denominator, thereby making calculations easier and cleaner. For instance, in the expression \( \frac{2 \sqrt{3}-\sqrt{2}}{4 \sqrt{3}} \), multiplying by \( \frac{\sqrt{3}}{\sqrt{3}} \) helps eliminate the square root in the denominator. Now, onto your exciting journey through mathematics! The real-world application of rationalizing expressions is especially prevalent in fields like engineering and physics, where precise calculations are essential. For example, when dealing with measuring angles or calculating trajectories, engineers often need to simplify complex expressions. Effectively rationalizing allows them to keep computations clear, ensuring that they can communicate findings without getting bogged down by cumbersome numbers and roots. So, next time you simplify an expression, think of all the engineers and scientists thanking you for your math prowess!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy