Question
upstudy study bank question image url

Simplify by adding. \( \begin{array}{lll}\text { a) } x+\frac{1}{2} x & \text { b) } \frac{3 m}{7}+\frac{2 m}{7} & \text { c) } \frac{n^{2}}{4}+\frac{2 n^{2}}{3} \\ \text { Subtract these monomials: } & \end{array} \)

Ask by Grant Alexander. in Spain
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Claro, aquí tienes la simplificación de los monomios sumados: a) \( x + \frac{1}{2}x = \frac{3}{2}x \) b) \( \frac{3m}{7} + \frac{2m}{7} = \frac{5m}{7} \) c) \( \frac{n^{2}}{4} + \frac{2n^{2}}{3} = \frac{11n^{2}}{12} \) Para la resta de monomios, necesito los términos específicos que deseas restar.

Solution

Claro, simplifiquemos sumando los siguientes monomios: ### a) \( x + \frac{1}{2}x \) **Paso 1:** Identificamos los coeficientes de \( x \). \[ 1 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2} \] **Paso 2:** Multiplicamos el coeficiente resultante por \( x \). \[ \frac{3}{2}x \] **Respuesta:** \[ x + \frac{1}{2}x = \frac{3}{2}x \] --- ### b) \( \frac{3m}{7} + \frac{2m}{7} \) **Paso 1:** Dado que los denominadores son iguales, sumamos los numeradores directamente. \[ \frac{3m}{7} + \frac{2m}{7} = \frac{3m + 2m}{7} = \frac{5m}{7} \] **Respuesta:** \[ \frac{3m}{7} + \frac{2m}{7} = \frac{5m}{7} \] --- ### c) \( \frac{n^{2}}{4} + \frac{2n^{2}}{3} \) **Paso 1:** Encontramos un denominador común para las fracciones, que es 12. \[ \frac{n^{2}}{4} = \frac{3n^{2}}{12}, \quad \frac{2n^{2}}{3} = \frac{8n^{2}}{12} \] **Paso 2:** Sumamos las fracciones. \[ \frac{3n^{2}}{12} + \frac{8n^{2}}{12} = \frac{11n^{2}}{12} \] **Respuesta:** \[ \frac{n^{2}}{4} + \frac{2n^{2}}{3} = \frac{11n^{2}}{12} \] --- ### Restar estos monomios: Parece que faltaron los monomios específicos para realizar la resta. Por favor, proporciona los monomios que deseas restar y con gusto te ayudaré a simplificarlos.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expressions by adding: a) \( x + \frac{1}{2} x = \frac{2}{2}x + \frac{1}{2}x = \frac{3}{2}x \) b) \( \frac{3 m}{7} + \frac{2 m}{7} = \frac{5 m}{7} \) c) To add \( \frac{n^{2}}{4}+\frac{2 n^{2}}{3} \), we need a common denominator, which is 12. So: \[ \frac{n^{2}}{4} = \frac{3n^{2}}{12} \quad \text{and} \quad \frac{2 n^{2}}{3} = \frac{8n^{2}}{12} \] Adding these gives: \[ \frac{3n^{2}}{12} + \frac{8n^{2}}{12} = \frac{11n^{2}}{12} \] To subtract such monomials, it mainly involves aligning like terms and ensuring a common denominator where necessary. Keep track of the signs and align the variables for a smooth operation!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy