Question
upstudy study bank question image url

\( \int \int ( 4 x + y ) ^ { 3 } d A , R ( 0,2 ) , ( 0,3 ) \)

Ask by Nunez Todd. in Cameroon
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The value of the double integral is 1600.5.

Solution

To evaluate the double integral \[ \iint_R (4x + y)^3 \, dA, \] where the region \( R \) is defined by \( 0 \leq x \leq 2 \) and \( 0 \leq y \leq 3 \), follow these steps: ### Step 1: Set Up the Integral The integral can be written as: \[ \int_{x=0}^{2} \int_{y=0}^{3} (4x + y)^3 \, dy \, dx \] ### Step 2: Evaluate the Inner Integral (with respect to \( y \)) \[ \int_{0}^{3} (4x + y)^3 \, dy \] Let \( u = 4x + y \). Then, \( du = dy \), and when \( y = 0 \), \( u = 4x \); when \( y = 3 \), \( u = 4x + 3 \). \[ \int_{4x}^{4x+3} u^3 \, du = \frac{u^4}{4} \Big|_{4x}^{4x+3} = \frac{(4x + 3)^4 - (4x)^4}{4} \] ### Step 3: Substitute Back into the Outer Integral \[ \int_{0}^{2} \frac{(4x + 3)^4 - (4x)^4}{4} \, dx = \frac{1}{4} \left( \int_{0}^{2} (4x + 3)^4 \, dx - \int_{0}^{2} (4x)^4 \, dx \right) \] ### Step 4: Evaluate Each Integral Separately 1. **First Integral:** Let \( u = 4x + 3 \), then \( du = 4 \, dx \), so \( dx = \frac{du}{4} \). When \( x = 0 \), \( u = 3 \); when \( x = 2 \), \( u = 11 \). \[ \int_{0}^{2} (4x + 3)^4 \, dx = \frac{1}{4} \int_{3}^{11} u^4 \, du = \frac{1}{20} \left[ u^5 \right]_{3}^{11} = \frac{11^5 - 3^5}{20} \] 2. **Second Integral:** \[ \int_{0}^{2} (4x)^4 \, dx = 4^4 \int_{0}^{2} x^4 \, dx = 256 \left[ \frac{x^5}{5} \right]_{0}^{2} = 256 \times \frac{32}{5} = \frac{8192}{5} \] ### Step 5: Combine the Results \[ \frac{1}{4} \left( \frac{11^5 - 3^5}{20} - \frac{8192}{5} \right) \] To simplify: \[ \frac{1}{4} \left( \frac{11^5 - 3^5 - 32768}{20} \right) = \frac{11^5 - 3^5 - 32768}{80} \] ### Step 6: Compute the Numerical Value Calculate \( 11^5 \), \( 3^5 \), and substitute: \[ 11^5 = 161051, \quad 3^5 = 243 \] \[ \frac{161051 - 243 - 32768}{80} = \frac{128040}{80} = 1600.5 \] ### Final Answer \[ \iint_R (4x + y)^3 \, dA = 1600.5 \] --- **Summary:** The value of the double integral is **1600.5**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the double integral \( \int \int (4x + y)^3 \, dA \) over the region \( R \) defined by \( 0 \leq x \leq 2 \) and \( 0 \leq y \leq 3 \), we first determine the order of integration. We'll integrate with respect to \( y \) first, followed by \( x \): \[ \int_0^2 \int_0^3 (4x + y)^3 \, dy \, dx \] To compute the inner integral: \[ \int_0^3 (4x + y)^3 \, dy \] Using the substitution \( u = 4x + y \) gives us \( du = dy \). Changing the limits accordingly, when \( y = 0 \), \( u = 4x \) and when \( y = 3 \), \( u = 4x + 3 \). The integral becomes: \[ \int_{4x}^{4x + 3} u^3 \, du \] Calculating this: \[ \frac{u^4}{4} \bigg|_{4x}^{4x + 3} = \frac{(4x + 3)^4}{4} - \frac{(4x)^4}{4} \] Now, we need to evaluate the area as: \[ \int_0^2 \left( \frac{(4x + 3)^4 - (4x)^4}{4} \right) dx \] This integral can be simplified further and calculated, resulting in the total value of the double integral. The final expression would yield a numerical answer upon solving the polynomial.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy