Question
upstudy study bank question image url

Is given that \( p=\cos \alpha+\sin \alpha \) and \( q=\cos \alpha-\sin \alpha \) 1 Determine the following trigonometric ratios in terms of \( p \) and/or \( q \) (a) \( \cos 2 \alpha \) (b) \( \tan \alpha \) (c) \( \frac{1+\sin 2 a}{\cos 2 a} \)

Ask by Dawson Garrett. in South Africa
Jan 13,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \cos 2\alpha = pq \), \( \tan \alpha = \frac{p - q}{p + q} \), and \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{2 + p^2 - q^2}{2pq} \).

Solution

To solve the problem, we start with the given expressions for \( p \) and \( q \): \[ p = \cos \alpha + \sin \alpha \] \[ q = \cos \alpha - \sin \alpha \] We will derive the required trigonometric ratios step by step. ### (a) Determine \( \cos 2\alpha \) Using the double angle formula for cosine, we have: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \] We can express \( \cos^2 \alpha \) and \( \sin^2 \alpha \) in terms of \( p \) and \( q \): 1. From \( p \) and \( q \), we can find \( \cos^2 \alpha \) and \( \sin^2 \alpha \): - Adding \( p \) and \( q \): \[ p + q = (\cos \alpha + \sin \alpha) + (\cos \alpha - \sin \alpha) = 2\cos \alpha \implies \cos \alpha = \frac{p + q}{2} \] - Subtracting \( q \) from \( p \): \[ p - q = (\cos \alpha + \sin \alpha) - (\cos \alpha - \sin \alpha) = 2\sin \alpha \implies \sin \alpha = \frac{p - q}{2} \] 2. Now, we can find \( \cos^2 \alpha \) and \( \sin^2 \alpha \): \[ \cos^2 \alpha = \left(\frac{p + q}{2}\right)^2 = \frac{(p + q)^2}{4} \] \[ \sin^2 \alpha = \left(\frac{p - q}{2}\right)^2 = \frac{(p - q)^2}{4} \] 3. Substitute these into the double angle formula: \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{(p + q)^2}{4} - \frac{(p - q)^2}{4} \] 4. Simplifying this: \[ \cos 2\alpha = \frac{(p + q)^2 - (p - q)^2}{4} \] \[ = \frac{(p^2 + 2pq + q^2) - (p^2 - 2pq + q^2)}{4} \] \[ = \frac{4pq}{4} = pq \] Thus, we have: \[ \cos 2\alpha = pq \] ### (b) Determine \( \tan \alpha \) Using the definitions of sine and cosine, we have: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{p - q}{2}}{\frac{p + q}{2}} = \frac{p - q}{p + q} \] Thus, we have: \[ \tan \alpha = \frac{p - q}{p + q} \] ### (c) Determine \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} \) Using the double angle formulas, we know: \[ \sin 2\alpha = 2\sin \alpha \cos \alpha \] Substituting the expressions for \( \sin \alpha \) and \( \cos \alpha \): \[ \sin 2\alpha = 2 \left(\frac{p - q}{2}\right) \left(\frac{p + q}{2}\right) = \frac{(p - q)(p + q)}{2} \] Now, substituting into the expression: \[ \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{1 + \frac{(p - q)(p + q)}{2}}{pq} \] Simplifying this: \[ = \frac{2 + (p - q)(p + q)}{2pq} \] \[ = \frac{2 + p^2 - q^2}{2pq} \] Thus, we have: \[ \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{2 + p^2 - q^2}{2pq} \] ### Summary of Results 1. \( \cos 2\alpha = pq \) 2. \( \tan \alpha = \frac{p - q}{p + q} \) 3. \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{2 + p^2 - q^2}{2pq} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the problem, we will express the trigonometric ratios in terms of \( p \) and \( q \). 1. **Determine \( \cos 2\alpha \)** Using the identity \( \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \), we can write: \[ \cos 2\alpha = (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha) = pq. \] Thus, \[ \cos 2\alpha = \frac{(p + q)(p - q)}{2} = \frac{p^2 - q^2}{2}. \] 2. **Determine \( \tan \alpha \)** We can find \( \tan \alpha \) using \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \). We have: \[ \sin \alpha = \frac{p - q}{2}, \quad \cos \alpha = \frac{p + q}{2}. \] Then, \[ \tan \alpha = \frac{\frac{p - q}{2}}{\frac{p + q}{2}} = \frac{p - q}{p + q}. \] 3. **Determine \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} \)** Using the double angle formulas, we have \( \sin 2\alpha = 2\sin \alpha \cos \alpha \): \[ \sin 2\alpha = 2 \cdot \frac{p - q}{2} \cdot \frac{p + q}{2} = \frac{(p - q)(p + q)}{2}. \] Thus, \[ 1 + \sin 2\alpha = 1 + \frac{(p - q)(p + q)}{2} = 1 + \frac{pq}{2}. \] Now, substituting our expression for \( \cos 2\alpha = pq \): \[ \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{1 + \frac{(p - q)(p + q)}{2}}{pq} = \frac{1 + pq/2}{pq}. \] Multiplying through gives: \[ \frac{1 + \frac{pq}{2}}{pq} = \frac{1}{pq} + \frac{1}{2}. \] In summary: (a) \( \cos 2\alpha = \frac{p^2 - q^2}{2} \) (b) \( \tan \alpha = \frac{p - q}{p + q} \) (c) \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{1}{pq} + \frac{1}{2} \)

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy