Is given that \( p=\cos \alpha+\sin \alpha \) and \( q=\cos \alpha-\sin \alpha \) 1 Determine the following trigonometric ratios in terms of \( p \) and/or \( q \) (a) \( \cos 2 \alpha \) (b) \( \tan \alpha \) (c) \( \frac{1+\sin 2 a}{\cos 2 a} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the problem, we will express the trigonometric ratios in terms of \( p \) and \( q \). 1. **Determine \( \cos 2\alpha \)** Using the identity \( \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \), we can write: \[ \cos 2\alpha = (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha) = pq. \] Thus, \[ \cos 2\alpha = \frac{(p + q)(p - q)}{2} = \frac{p^2 - q^2}{2}. \] 2. **Determine \( \tan \alpha \)** We can find \( \tan \alpha \) using \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \). We have: \[ \sin \alpha = \frac{p - q}{2}, \quad \cos \alpha = \frac{p + q}{2}. \] Then, \[ \tan \alpha = \frac{\frac{p - q}{2}}{\frac{p + q}{2}} = \frac{p - q}{p + q}. \] 3. **Determine \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} \)** Using the double angle formulas, we have \( \sin 2\alpha = 2\sin \alpha \cos \alpha \): \[ \sin 2\alpha = 2 \cdot \frac{p - q}{2} \cdot \frac{p + q}{2} = \frac{(p - q)(p + q)}{2}. \] Thus, \[ 1 + \sin 2\alpha = 1 + \frac{(p - q)(p + q)}{2} = 1 + \frac{pq}{2}. \] Now, substituting our expression for \( \cos 2\alpha = pq \): \[ \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{1 + \frac{(p - q)(p + q)}{2}}{pq} = \frac{1 + pq/2}{pq}. \] Multiplying through gives: \[ \frac{1 + \frac{pq}{2}}{pq} = \frac{1}{pq} + \frac{1}{2}. \] In summary: (a) \( \cos 2\alpha = \frac{p^2 - q^2}{2} \) (b) \( \tan \alpha = \frac{p - q}{p + q} \) (c) \( \frac{1 + \sin 2\alpha}{\cos 2\alpha} = \frac{1}{pq} + \frac{1}{2} \)