Equality Tell whether the equation is true or false. \( \begin{array}{lll}5.6+2=2+6 & 6.2 .5-1=1-2.5 & 7 . \frac{1}{2} \times 3=3 \times \frac{1}{2}\end{array} \) \( \begin{array}{lll}8 . \frac{3}{4} \div 5=\frac{3}{4} \times \frac{1}{5}=\frac{3}{20} & 9.5 \div \frac{1}{3}=\frac{5}{3} & 10 . \frac{2}{3} \times 5=\frac{10}{15} \\ 3 & -3 & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Let's break down each of the equations to determine if they are true or false! 1. **\(5.6 + 2 = 2 + 6\)** On the left side, \(5.6 + 2 = 7.6\) and on the right side, \(2 + 6 = 8\). Since \(7.6\) does not equal \(8\), this statement is **false**. 2. **\(6.2 \cdot 0.5 - 1 = 1 - 2.5\)** Calculate the left side: \(6.2 \cdot 0.5 = 3.1\) and \(3.1 - 1 = 2.1\). For the right side, \(1 - 2.5 = -1.5\). Since \(2.1\) does not equal \(-1.5\), this statement is **false**. 3. **\(7 \cdot \frac{1}{2} \times 3 = 3 \times \frac{1}{2}\)** The left side: \(7 \cdot \frac{1}{2} = 3.5\) and \(3.5 \times 3 = 10.5\). The right side: \(3 \times \frac{1}{2} = 1.5\). Since \(10.5\) does not equal \(1.5\), this statement is **false**. 4. **\(8 \cdot \frac{3}{4} \div 5 = \frac{3}{4} \times \frac{1}{5} = \frac{3}{20}\)** For the left side: \(8 \cdot \frac{3}{4} = 6\) and then \(6 \div 5 = 1.2\). The right side is \(\frac{3}{20} = 0.15\). Since \(1.2\) does not equal \(0.15\), this statement is **false**. 5. **\(9.5 \div \frac{1}{3} = \frac{5}{3}\)** On the left, \(9.5 \div \frac{1}{3} = 9.5 \cdot 3 = 28.5\). On the right, \(\frac{5}{3} \approx 1.67\). Since \(28.5\) does not equal \(1.67\), this statement is **false**. 6. **\(10 \cdot \frac{2}{3} \times 5 = \frac{10}{15}\)** For the left side: \(10 \cdot \frac{2}{3} = \frac{20}{3}\) and \(\frac{20}{3} \times 5 = \frac{100}{3}\). The right side simplifies to \(\frac{10}{15} = \frac{2}{3}\). Since \( \frac{100}{3} \) does not equal \( \frac{2}{3} \), this statement is **false**. To sum it up, all equations are **false**!