Question
upstudy study bank question image url

Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( \mathbf{v}=-24 i-7 \mathbf{j} \). 0 of 1 b. Find \( b \) if \( v=\left(\frac{1}{6}, b\right) \) is a unit vector. c. Find all values of a such that \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10} \mathrm{j} \) is a unit vector.

Ask by Watson Greene. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Part (a):** The two unit vectors parallel to \( \mathbf{v} = -24\,\mathbf{i} -7\,\mathbf{j} \) are: \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \quad \text{and} \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] **Part (b):** The values of \( b \) are: \[ b = \frac{\sqrt{35}}{6} \quad \text{and} \quad b = -\frac{\sqrt{35}}{6} \] **Part (c):** The values of \( a \) are: \[ a = \frac{10\sqrt{101}}{101} \quad \text{and} \quad a = -\frac{10\sqrt{101}}{101} \]

Solution

Sure, let's tackle each part step by step. --- ### **Part (a): Find Two Unit Vectors Parallel to \( \mathbf{v} = -24\,\mathbf{i} - 7\,\mathbf{j} \)** A **unit vector** is a vector with a magnitude of 1. To find unit vectors parallel to \( \mathbf{v} \), we first need to normalize \( \mathbf{v} \). 1. **Calculate the magnitude of \( \mathbf{v} \):** \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \] 2. **Normalize \( \mathbf{v} \) to get the first unit vector:** \[ \mathbf{u}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-24\,\mathbf{i} - 7\,\mathbf{j}}{25} = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \] 3. **Find the second unit vector by taking the negative of \( \mathbf{u}_1 \):** \[ \mathbf{u}_2 = -\mathbf{u}_1 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] **Therefore, the two unit vectors parallel to \( \mathbf{v} \) are:** \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \quad \text{and} \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] --- ### **Part (b): Find \( b \) if \( \mathbf{v} = \left(\frac{1}{6}, b\right) \) is a Unit Vector** For \( \mathbf{v} = \left(\frac{1}{6}, b\right) \) to be a unit vector, its magnitude must be 1. 1. **Set up the equation for the magnitude:** \[ \left\|\mathbf{v}\right\| = \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1 \] 2. **Solve for \( b \):** \[ \sqrt{\frac{1}{36} + b^2} = 1 \\ \frac{1}{36} + b^2 = 1 \\ b^2 = 1 - \frac{1}{36} \\ b^2 = \frac{36}{36} - \frac{1}{36} \\ b^2 = \frac{35}{36} \\ b = \pm \frac{\sqrt{35}}{6} \] **Therefore, the possible values of \( b \) are:** \[ b = \frac{\sqrt{35}}{6} \quad \text{or} \quad b = -\frac{\sqrt{35}}{6} \] --- ### **Part (c): Find All Values of \( a \) Such That \( \mathbf{w} = a\,\mathbf{i} - \frac{a}{10}\,\mathbf{j} \) is a Unit Vector** For \( \mathbf{w} = a\,\mathbf{i} - \frac{a}{10}\,\mathbf{j} \) to be a unit vector, its magnitude must be 1. 1. **Express the magnitude of \( \mathbf{w} \):** \[ \left\|\mathbf{w}\right\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{\frac{100a^2 + a^2}{100}} = \sqrt{\frac{101a^2}{100}} = \frac{\sqrt{101}\,|a|}{10} \] 2. **Set the magnitude equal to 1 and solve for \( a \):** \[ \frac{\sqrt{101}\,|a|}{10} = 1 \\ |a| = \frac{10}{\sqrt{101}} \\ a = \pm \frac{10}{\sqrt{101}} \] To rationalize the denominator: \[ a = \pm \frac{10\sqrt{101}}{101} \] **Therefore, the values of \( a \) are:** \[ a = \frac{10\sqrt{101}}{101} \quad \text{and} \quad a = -\frac{10\sqrt{101}}{101} \] --- **Summary of Answers:** - **(a)** The two unit vectors parallel to \( \mathbf{v} = -24\,\mathbf{i} -7\,\mathbf{j} \) are: \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j}, \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] - **(b)** The values of \( b \) are: \[ b = \pm \frac{\sqrt{35}}{6} \] - **(c)** The values of \( a \) are: \[ a = \pm \frac{10\sqrt{101}}{101} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the problem step by step, let's complete each part: **a.** To find a unit vector parallel to \( \mathbf{v}=-24 \mathbf{i}-7 \mathbf{j} \), first we need to find the magnitude of \( \mathbf{v} \): \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25. \] Now, to find a unit vector in the same direction, we divide by its magnitude: \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(-\frac{24}{25}, -\frac{7}{25}\right). \] The opposite direction of this vector would also be a unit vector: \[ \mathbf{u'} = \left(\frac{24}{25}, \frac{7}{25}\right). \] So, the two unit vectors parallel to \( \mathbf{v} \) are \( \left(-\frac{24}{25}, -\frac{7}{25}\right) \) and \( \left(\frac{24}{25}, \frac{7}{25}\right) \). **b.** To find \( b \) in the unit vector \( v=\left(\frac{1}{6}, b\right) \), we use the unit vector condition which states that its magnitude must equal 1: \[ \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1. \] This gives us: \[ \left(\frac{1}{6}\right)^2 + b^2 = 1 \implies \frac{1}{36} + b^2 = 1 \implies b^2 = 1 - \frac{1}{36} = \frac{36}{36} - \frac{1}{36} = \frac{35}{36}. \] Taking the square root: \[ b = \pm \sqrt{\frac{35}{36}} = \pm \frac{\sqrt{35}}{6}. \] **c.** For the vector \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10}\mathrm{j} \) to be a unit vector, we need its magnitude to equal 1: \[ \|\mathbf{w}\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = 1. \] Calculating the magnitude gives: \[ \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{a^2 \left(1 + \frac{1}{100}\right)} = \sqrt{a^2 \cdot \frac{101}{100}} = \frac{|a|\sqrt{101}}{10}. \] Setting this equal to 1 gives: \[ \frac{|a|\sqrt{101}}{10} = 1 \implies |a| = \frac{10}{\sqrt{101}}. \] Thus, values of \( a \) can be either positive or negative: \[ a = \frac{10}{\sqrt{101}} \quad \text{or} \quad a = -\frac{10}{\sqrt{101}}. \]

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy