Pregunta
upstudy study bank question image url

Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( \mathbf{v}=-24 i-7 \mathbf{j} \). 0 of 1 b. Find \( b \) if \( v=\left(\frac{1}{6}, b\right) \) is a unit vector. c. Find all values of a such that \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10} \mathrm{j} \) is a unit vector.

Ask by Watson Greene. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** The two unit vectors parallel to \( \mathbf{v} = -24\,\mathbf{i} -7\,\mathbf{j} \) are: \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \quad \text{and} \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] **Part (b):** The values of \( b \) are: \[ b = \frac{\sqrt{35}}{6} \quad \text{and} \quad b = -\frac{\sqrt{35}}{6} \] **Part (c):** The values of \( a \) are: \[ a = \frac{10\sqrt{101}}{101} \quad \text{and} \quad a = -\frac{10\sqrt{101}}{101} \]

Solución

Sure, let's tackle each part step by step. --- ### **Part (a): Find Two Unit Vectors Parallel to \( \mathbf{v} = -24\,\mathbf{i} - 7\,\mathbf{j} \)** A **unit vector** is a vector with a magnitude of 1. To find unit vectors parallel to \( \mathbf{v} \), we first need to normalize \( \mathbf{v} \). 1. **Calculate the magnitude of \( \mathbf{v} \):** \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \] 2. **Normalize \( \mathbf{v} \) to get the first unit vector:** \[ \mathbf{u}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-24\,\mathbf{i} - 7\,\mathbf{j}}{25} = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \] 3. **Find the second unit vector by taking the negative of \( \mathbf{u}_1 \):** \[ \mathbf{u}_2 = -\mathbf{u}_1 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] **Therefore, the two unit vectors parallel to \( \mathbf{v} \) are:** \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j} \quad \text{and} \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] --- ### **Part (b): Find \( b \) if \( \mathbf{v} = \left(\frac{1}{6}, b\right) \) is a Unit Vector** For \( \mathbf{v} = \left(\frac{1}{6}, b\right) \) to be a unit vector, its magnitude must be 1. 1. **Set up the equation for the magnitude:** \[ \left\|\mathbf{v}\right\| = \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1 \] 2. **Solve for \( b \):** \[ \sqrt{\frac{1}{36} + b^2} = 1 \\ \frac{1}{36} + b^2 = 1 \\ b^2 = 1 - \frac{1}{36} \\ b^2 = \frac{36}{36} - \frac{1}{36} \\ b^2 = \frac{35}{36} \\ b = \pm \frac{\sqrt{35}}{6} \] **Therefore, the possible values of \( b \) are:** \[ b = \frac{\sqrt{35}}{6} \quad \text{or} \quad b = -\frac{\sqrt{35}}{6} \] --- ### **Part (c): Find All Values of \( a \) Such That \( \mathbf{w} = a\,\mathbf{i} - \frac{a}{10}\,\mathbf{j} \) is a Unit Vector** For \( \mathbf{w} = a\,\mathbf{i} - \frac{a}{10}\,\mathbf{j} \) to be a unit vector, its magnitude must be 1. 1. **Express the magnitude of \( \mathbf{w} \):** \[ \left\|\mathbf{w}\right\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{\frac{100a^2 + a^2}{100}} = \sqrt{\frac{101a^2}{100}} = \frac{\sqrt{101}\,|a|}{10} \] 2. **Set the magnitude equal to 1 and solve for \( a \):** \[ \frac{\sqrt{101}\,|a|}{10} = 1 \\ |a| = \frac{10}{\sqrt{101}} \\ a = \pm \frac{10}{\sqrt{101}} \] To rationalize the denominator: \[ a = \pm \frac{10\sqrt{101}}{101} \] **Therefore, the values of \( a \) are:** \[ a = \frac{10\sqrt{101}}{101} \quad \text{and} \quad a = -\frac{10\sqrt{101}}{101} \] --- **Summary of Answers:** - **(a)** The two unit vectors parallel to \( \mathbf{v} = -24\,\mathbf{i} -7\,\mathbf{j} \) are: \[ \mathbf{u}_1 = -\frac{24}{25}\,\mathbf{i} - \frac{7}{25}\,\mathbf{j}, \quad \mathbf{u}_2 = \frac{24}{25}\,\mathbf{i} + \frac{7}{25}\,\mathbf{j} \] - **(b)** The values of \( b \) are: \[ b = \pm \frac{\sqrt{35}}{6} \] - **(c)** The values of \( a \) are: \[ a = \pm \frac{10\sqrt{101}}{101} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem step by step, let's complete each part: **a.** To find a unit vector parallel to \( \mathbf{v}=-24 \mathbf{i}-7 \mathbf{j} \), first we need to find the magnitude of \( \mathbf{v} \): \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25. \] Now, to find a unit vector in the same direction, we divide by its magnitude: \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(-\frac{24}{25}, -\frac{7}{25}\right). \] The opposite direction of this vector would also be a unit vector: \[ \mathbf{u'} = \left(\frac{24}{25}, \frac{7}{25}\right). \] So, the two unit vectors parallel to \( \mathbf{v} \) are \( \left(-\frac{24}{25}, -\frac{7}{25}\right) \) and \( \left(\frac{24}{25}, \frac{7}{25}\right) \). **b.** To find \( b \) in the unit vector \( v=\left(\frac{1}{6}, b\right) \), we use the unit vector condition which states that its magnitude must equal 1: \[ \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1. \] This gives us: \[ \left(\frac{1}{6}\right)^2 + b^2 = 1 \implies \frac{1}{36} + b^2 = 1 \implies b^2 = 1 - \frac{1}{36} = \frac{36}{36} - \frac{1}{36} = \frac{35}{36}. \] Taking the square root: \[ b = \pm \sqrt{\frac{35}{36}} = \pm \frac{\sqrt{35}}{6}. \] **c.** For the vector \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10}\mathrm{j} \) to be a unit vector, we need its magnitude to equal 1: \[ \|\mathbf{w}\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = 1. \] Calculating the magnitude gives: \[ \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{a^2 \left(1 + \frac{1}{100}\right)} = \sqrt{a^2 \cdot \frac{101}{100}} = \frac{|a|\sqrt{101}}{10}. \] Setting this equal to 1 gives: \[ \frac{|a|\sqrt{101}}{10} = 1 \implies |a| = \frac{10}{\sqrt{101}}. \] Thus, values of \( a \) can be either positive or negative: \[ a = \frac{10}{\sqrt{101}} \quad \text{or} \quad a = -\frac{10}{\sqrt{101}}. \]

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad