Pregunta
upstudy study bank question image url

Complete parts (a) through © below.
a. Find two unit vectors parallel to . 0 of 1
b. Find if is a unit vector.
c. Find all values of a such that is a unit vector.

Ask by Watson Greene. in the United States
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Part (a): The two unit vectors parallel to are:
Part (b): The values of are:
Part ©: The values of are:

Solución

Sure, let’s tackle each part step by step.

Part (a): Find Two Unit Vectors Parallel to

A unit vector is a vector with a magnitude of 1. To find unit vectors parallel to , we first need to normalize .
  1. Calculate the magnitude of :
  2. Normalize to get the first unit vector:
  3. Find the second unit vector by taking the negative of :
Therefore, the two unit vectors parallel to are:

Part (b): Find if is a Unit Vector

For to be a unit vector, its magnitude must be 1.
  1. Set up the equation for the magnitude:
  2. Solve for :
Therefore, the possible values of are:

Part ©: Find All Values of Such That is a Unit Vector

For to be a unit vector, its magnitude must be 1.
  1. Express the magnitude of :
  2. Set the magnitude equal to 1 and solve for :
    To rationalize the denominator:
Therefore, the values of are:

Summary of Answers:
  • (a) The two unit vectors parallel to are:
  • (b) The values of are:
  • © The values of are:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem step by step, let’s complete each part:
a. To find a unit vector parallel to , first we need to find the magnitude of :
Now, to find a unit vector in the same direction, we divide by its magnitude:
The opposite direction of this vector would also be a unit vector:
So, the two unit vectors parallel to are and .
b. To find in the unit vector , we use the unit vector condition which states that its magnitude must equal 1:
This gives us:
Taking the square root:
c. For the vector to be a unit vector, we need its magnitude to equal 1:
Calculating the magnitude gives:
Setting this equal to 1 gives:
Thus, values of can be either positive or negative:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad