Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( \mathbf{v}=-24 i-7 \mathbf{j} \). 0 of 1 b. Find \( b \) if \( v=\left(\frac{1}{6}, b\right) \) is a unit vector. c. Find all values of a such that \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10} \mathrm{j} \) is a unit vector.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the problem step by step, let's complete each part: **a.** To find a unit vector parallel to \( \mathbf{v}=-24 \mathbf{i}-7 \mathbf{j} \), first we need to find the magnitude of \( \mathbf{v} \): \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25. \] Now, to find a unit vector in the same direction, we divide by its magnitude: \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(-\frac{24}{25}, -\frac{7}{25}\right). \] The opposite direction of this vector would also be a unit vector: \[ \mathbf{u'} = \left(\frac{24}{25}, \frac{7}{25}\right). \] So, the two unit vectors parallel to \( \mathbf{v} \) are \( \left(-\frac{24}{25}, -\frac{7}{25}\right) \) and \( \left(\frac{24}{25}, \frac{7}{25}\right) \). **b.** To find \( b \) in the unit vector \( v=\left(\frac{1}{6}, b\right) \), we use the unit vector condition which states that its magnitude must equal 1: \[ \sqrt{\left(\frac{1}{6}\right)^2 + b^2} = 1. \] This gives us: \[ \left(\frac{1}{6}\right)^2 + b^2 = 1 \implies \frac{1}{36} + b^2 = 1 \implies b^2 = 1 - \frac{1}{36} = \frac{36}{36} - \frac{1}{36} = \frac{35}{36}. \] Taking the square root: \[ b = \pm \sqrt{\frac{35}{36}} = \pm \frac{\sqrt{35}}{6}. \] **c.** For the vector \( \mathbf{w}=\mathrm{ai}-\frac{\mathrm{a}}{10}\mathrm{j} \) to be a unit vector, we need its magnitude to equal 1: \[ \|\mathbf{w}\| = \sqrt{a^2 + \left(-\frac{a}{10}\right)^2} = 1. \] Calculating the magnitude gives: \[ \sqrt{a^2 + \frac{a^2}{100}} = \sqrt{a^2 \left(1 + \frac{1}{100}\right)} = \sqrt{a^2 \cdot \frac{101}{100}} = \frac{|a|\sqrt{101}}{10}. \] Setting this equal to 1 gives: \[ \frac{|a|\sqrt{101}}{10} = 1 \implies |a| = \frac{10}{\sqrt{101}}. \] Thus, values of \( a \) can be either positive or negative: \[ a = \frac{10}{\sqrt{101}} \quad \text{or} \quad a = -\frac{10}{\sqrt{101}}. \]