4. \( \left[\left(-\frac{5}{18}+\frac{3}{2}-\frac{1}{3}\right):\left(\frac{6}{5}-\frac{7}{3}-\frac{1}{5}\right)-\frac{3}{4}\right]:\left[\left(-\frac{1}{2}+\frac{5}{3}\right):\left(-\frac{3}{10}+\frac{1}{20}-\frac{5}{4}+\frac{1}{3}\right)\right]-\frac{17}{12} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve the given expression, let's break it down step by step. 1. **Calculate the inner expressions:** - For the first part, combine \(-\frac{5}{18}+\frac{3}{2}-\frac{1}{3}\): - Convert each fraction to a common denominator (which is 18): \[ -\frac{5}{18} + \frac{27}{18} - \frac{6}{18} = \frac{16}{18} = \frac{8}{9} \] - Now for the denominator, \(\frac{6}{5}-\frac{7}{3}-\frac{1}{5}\): - The common denominator is 15: \[ \frac{18}{15} - \frac{35}{15} - \frac{3}{15} = \frac{-20}{15} = -\frac{4}{3} \] - Now we have: \[ \left(\frac{8}{9} : -\frac{4}{3}\right) - \frac{3}{4} \] - The division \(\frac{8}{9} : -\frac{4}{3}\) translates to multiplying by the reciprocal: \[ \frac{8}{9} \times -\frac{3}{4} = -\frac{24}{36} = -\frac{2}{3} \] - So, the first part simplifies to: \[ -\frac{2}{3} - \frac{3}{4} \] - The common denominator here is 12: \[ -\frac{8}{12} - \frac{9}{12} = -\frac{17}{12} \] 2. **Now evaluate the second part:** - For \(-\frac{1}{2} + \frac{5}{3}\): - The common denominator is 6: \[ -\frac{3}{6} + \frac{10}{6} = \frac{7}{6} \] - Now for the denominator \(-\frac{3}{10} + \frac{1}{20} - \frac{5}{4} + \frac{1}{3}\): - The common denominator here is 60: \[ -\frac{18}{60} + \frac{3}{60} - \frac{75}{60} + \frac{20}{60} = -\frac{70}{60} = -\frac{7}{6} \] - Now we have: \[ \frac{7}{6} : -\frac{7}{6} \] - This yields: \[ -1 \] 3. **Putting it all together:** - Now we substitute back into the larger expression: \[ -\frac{17}{12} - (-1) = -\frac{17}{12} + 1 = -\frac{17}{12} + \frac{12}{12} = -\frac{5}{12} \] Thus, the final result of the expression is: \[ \boxed{-\frac{5}{12}} \]