Question
Question
Vraag 2
The supply function for a commodity takes the form
, for some constants
.
When
, the quantity supplied is 5 ; when
, the quantity supplied is 12 ; when
, the quantity
supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants
. Give the
supply funcrtion. / Die aanbodfunksie vir 'n produk het die vorm
, vir die konstantes
The supply function for a commodity takes the form
When
supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants
supply funcrtion. / Die aanbodfunksie vir 'n produk het die vorm
Ask by Macdonald Weaver. in South Africa
Mar 24,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The constants are
,
, and
. The supply function is
.
Solution
We are given that the supply function is
with three conditions:
This yields the system:
Step 1. Subtract the first equation from the second:
which simplifies to:
Step 2. Subtract the first equation from the third:
which simplifies to:
Divide through by 2:
Step 3. Subtract equation (1) from equation (2):
which gives:
Step 4. Substitute
into equation (1):
so:
Step 5. Substitute
and
into the first equation:
Thus, the constants are
,
, and
.
The supply function is
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


The Deep Dive
Om die konstantes
,
en
te vind, kan ons die gegewe inligting in 'n stel vergelykings omskakel. Ons weet dat:
- Wanneer
, - Wanneer
, - Wanneer
,
Dit gee ons die volgende stelsel van vergelykings:
Nou kan ons hierdie stelsel met matriksreïging oplos. Begin met die vergelykings in 'n matriks formaat:
Deur Gaussian eliminering te gebruik, sal jy die konstantes vind as
.
So, die aanbodfunksie is:
Jippie! Daar het ons die aanbodfunksie! 🎉