Question
Find \( f(1) \) for the piece-wise function. \( f(x)=\left\{\begin{array}{ll}x & \text { if } x \leq 0 \\ x+1 & \text { if } x>0\end{array}\right. \) \( f(1)=[?] \)
Ask by Davey Robbins. in the United States
Feb 04,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f(1) = 2 \)
Solution
Para encontrar \( f(1) \) para la función definida por partes:
\[
f(x) = \begin{cases}
x & \text{si } x \leq 0 \\
x + 1 & \text{si } x > 0
\end{cases}
\]
Dado que \( 1 > 0 \), utilizamos la segunda parte de la función:
\[
f(1) = 1 + 1 = 2
\]
**Respuesta:** \( f(1) = 2 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To find \( f(1) \) for the given piecewise function, we first need to look at the conditions specified. Since \( 1 > 0 \), we will use the second piece of the function, which is \( f(x) = x + 1 \). Substituting \( 1 \) into the equation, we get: \[ f(1) = 1 + 1 = 2 \] Therefore, \( f(1) = 2 \).