Question
Evaluate the expression. \( (-2)^{3}-3 \cdot\left(3^{3}+5\right)-4 \)
Ask by Newton Mckenzie. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The expression evaluates to \(-108\).
Solution
Let's evaluate the expression step by step:
\[
(-2)^{3} - 3 \cdot \left(3^{3} + 5\right) - 4
\]
1. **Calculate \((-2)^{3}\):**
\[
(-2)^{3} = (-2) \times (-2) \times (-2) = -8
\]
2. **Calculate \(3^{3}\):**
\[
3^{3} = 3 \times 3 \times 3 = 27
\]
3. **Add 5 to \(3^{3}\):**
\[
27 + 5 = 32
\]
4. **Multiply by 3:**
\[
3 \times 32 = 96
\]
5. **Combine all parts of the expression:**
\[
-8 - 96 - 4 = -108
\]
**Final Answer:** \(-108\)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
Let's evaluate the expression step by step. 1. Calculate \( (-2)^{3} \): \[ (-2)^{3} = -8 \] 2. Calculate \( 3^{3} + 5 \): \[ 3^{3} = 27 \quad \text{so} \quad 27 + 5 = 32 \] 3. Then calculate \( -3 \cdot 32 \): \[ -3 \cdot 32 = -96 \] 4. Now substitute these results back into the original expression: \[ (-2)^{3} - 3 \cdot (3^{3} + 5) - 4 = -8 - 96 - 4 \] 5. Finally, combine the numbers: \[ -8 - 96 = -104 \quad \text{and then} \quad -104 - 4 = -108 \] The value of the expression is: \[ \boxed{-108} \]