Question
upstudy study bank question image url

б) \( \left(\frac{y}{x}-\frac{x}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right) \)

Ask by Adkins Pearson. in Greece
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La expresión simplifica a \( y + x \).

Solution

Calculate or simplify the expression \( (y/x - x/y) / (1/x - 1/y) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\frac{y}{x}-\frac{x}{y}\right)}{\left(\frac{1}{x}-\frac{1}{y}\right)}\) - step1: Remove the parentheses: \(\frac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{x}-\frac{1}{y}}\) - step2: Subtract the terms: \(\frac{\frac{y^{2}-x^{2}}{xy}}{\frac{1}{x}-\frac{1}{y}}\) - step3: Subtract the terms: \(\frac{\frac{y^{2}-x^{2}}{xy}}{\frac{y-x}{xy}}\) - step4: Multiply by the reciprocal: \(\frac{y^{2}-x^{2}}{xy}\times \frac{xy}{y-x}\) - step5: Rewrite the expression: \(\frac{\left(y-x\right)\left(y+x\right)}{xy}\times \frac{xy}{y-x}\) - step6: Reduce the fraction: \(\left(y+x\right)\times 1\) - step7: Multiply the terms: \(y+x\) La expresión \( \left(\frac{y}{x}-\frac{x}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right) \) se simplifica a \( y+x \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Чтобы упростить выражение \( \left(\frac{y}{x}-\frac{x}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right) \), начнем с упрощения числителя и знаменателя отдельно. Числитель: \[ \frac{y}{x} - \frac{x}{y} = \frac{y^2 - x^2}{xy} = \frac{(y-x)(y+x)}{xy}. \] Знаменатель: \[ \frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy}. \] Теперь подставим упрощения обратно в выражение: \[ \frac{\frac{(y-x)(y+x)}{xy}}{\frac{y-x}{xy}}. \] Здесь \( \frac{1}{xy} \) в числителе и знаменателе сокращается. Получаем: \[ \frac{(y-x)(y+x)}{y-x}. \] При условии, что \( y \neq x \), мы можем сократить \( y-x \): \[ \Rightarrow -(y+x) \text{ (заменили } (y-x) \text{ на } -(x-y)). \] Итак, итоговое упрощенное выражение: \[ -(y+x). \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy