Solution
To apply the Mean Value Theorem (MVT), we first need to ensure that the function \( f(x) = x^3 - 5 \cos(2x - 2) \) meets the conditions of the theorem on the interval \([-2, 3]\). The conditions are:
1. \( f \) is continuous on the closed interval \([-2, 3]\).
2. \( f \) is differentiable on the open interval \((-2, 3)\).
Since \( f(x) \) is a polynomial and a composition of continuous functions, it is continuous and differentiable everywhere, including on the specified interval.
Next, we need to find the average rate of change of \( f \) over the interval \([-2, 3]\):
\[
\text{Average Rate of Change} = \frac{f(3) - f(-2)}{3 - (-2)}
\]
Let's calculate \( f(3) \) and \( f(-2) \):
1. Calculate \( f(3) \):
\[
f(3) = 3^3 - 5 \cos(2 \cdot 3 - 2) = 27 - 5 \cos(4)
\]
2. Calculate \( f(-2) \):
\[
f(-2) = (-2)^3 - 5 \cos(2 \cdot (-2) - 2) = -8 - 5 \cos(-6)
\]
Now, we will compute these values.
Calculate the value by following steps:
- step0: Calculate:
\(27-5\cos\left(4\right)\)
- step1: Calculate the trigonometric value:
\(30.268218\)
Calculate or simplify the expression \( -8 - 5 * \cos(-6) \).
Calculate the value by following steps:
- step0: Calculate:
\(-8-5\cos\left(-6\right)\)
- step1: Calculate:
\(-8-5\cos\left(6\right)\)
- step2: Calculate the trigonometric value:
\(-12.800851\)
Now we have the values:
- \( f(3) \approx 30.268 \)
- \( f(-2) \approx -12.801 \)
Next, we can calculate the average rate of change:
\[
\text{Average Rate of Change} = \frac{f(3) - f(-2)}{3 - (-2)} = \frac{30.268 - (-12.801)}{5} = \frac{30.268 + 12.801}{5}
\]
Let's compute this value.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(30.268+12.801\right)}{5}\)
- step1: Remove the parentheses:
\(\frac{30.268+12.801}{5}\)
- step2: Add the numbers:
\(\frac{43.069}{5}\)
- step3: Convert the expressions:
\(\frac{\frac{43069}{1000}}{5}\)
- step4: Multiply by the reciprocal:
\(\frac{43069}{1000}\times \frac{1}{5}\)
- step5: Multiply the fractions:
\(\frac{43069}{1000\times 5}\)
- step6: Multiply:
\(\frac{43069}{5000}\)
It seems that the equation cannot be solved directly using the tool. Instead, we can approach this problem numerically or graphically to find the values of \( c \) that satisfy the equation \( 3c^2 + 10 \sin(2c - 2) = 8.614 \).
To do this, we can rearrange the equation to:
\[
3c^2 + 10 \sin(2c - 2) - 8.614 = 0
\]
We can use numerical methods or a graphing approach to find the roots of this equation in the interval \((-2, 3)\).
Let's evaluate \( f'(c) \) at several points in the interval to find where it is approximately equal to \( 8.614 \). I will check a few values of \( c \) in the interval \((-2, 3)\).
Calculate the value by following steps:
- step0: Calculate:
\(3\times 1^{2}+10\sin\left(2\times 1-2\right)\)
- step1: Multiply:
\(3\times 1^{2}+10\sin\left(2-2\right)\)
- step2: Subtract the terms:
\(3\times 1^{2}+10\sin\left(0\right)\)
- step3: Evaluate the power:
\(3\times 1+10\sin\left(0\right)\)
- step4: Calculate:
\(3\times 1+10\times 0\)
- step5: Multiply the numbers:
\(3\times 1+0\)
- step6: Multiply:
\(3+0\)
- step7: Remove 0:
\(3\)
Calculate or simplify the expression \( 3*(0)^{2} + 10*\sin(2*(0) - 2) \).
Calculate the value by following steps:
- step0: Calculate:
\(3\times 0^{2}+10\sin\left(2\times 0-2\right)\)
- step1: Multiply:
\(3\times 0^{2}+10\sin\left(0-2\right)\)
- step2: Remove 0:
\(3\times 0^{2}+10\sin\left(-2\right)\)
- step3: Calculate:
\(3\times 0+10\sin\left(-2\right)\)
- step4: Multiply the numbers:
\(0+10\sin\left(-2\right)\)
- step5: Calculate:
\(0+10\left(-\sin\left(2\right)\right)\)
- step6: Rewrite the expression:
\(0-10\sin\left(2\right)\)
- step7: Remove 0:
\(-10\sin\left(2\right)\)
Calculate or simplify the expression \( 3*(3)^{2} + 10*\sin(2*(3) - 2) \).
Calculate the value by following steps:
- step0: Calculate:
\(3\times 3^{2}+10\sin\left(2\times 3-2\right)\)
- step1: Multiply the numbers:
\(3\times 3^{2}+10\sin\left(6-2\right)\)
- step2: Subtract the numbers:
\(3\times 3^{2}+10\sin\left(4\right)\)
- step3: Calculate:
\(3^{3}+10\sin\left(4\right)\)
- step4: Evaluate the power:
\(27+10\sin\left(4\right)\)
- step5: Calculate the trigonometric value:
\(19.431975\)
Calculate or simplify the expression \( 3*(-1)^{2} + 10*\sin(2*(-1) - 2) \).
Calculate the value by following steps:
- step0: Calculate:
\(3\left(-1\right)^{2}+10\sin\left(2\left(-1\right)-2\right)\)
- step1: Simplify:
\(3\left(-1\right)^{2}+10\sin\left(-2-2\right)\)
- step2: Subtract the numbers:
\(3\left(-1\right)^{2}+10\sin\left(-4\right)\)
- step3: Evaluate the power:
\(3\times 1+10\sin\left(-4\right)\)
- step4: Calculate:
\(3\times 1+10\left(-\sin\left(4\right)\right)\)
- step5: Multiply:
\(3+10\left(-\sin\left(4\right)\right)\)
- step6: Rewrite the expression:
\(3-10\sin\left(4\right)\)
- step7: Calculate the trigonometric value:
\(10.568025\)
Calculate or simplify the expression \( 3*(2)^{2} + 10*\sin(2*(2) - 2) \).
Calculate the value by following steps:
- step0: Calculate:
\(3\times 2^{2}+10\sin\left(2\times 2-2\right)\)
- step1: Multiply the numbers:
\(3\times 2^{2}+10\sin\left(4-2\right)\)
- step2: Subtract the numbers:
\(3\times 2^{2}+10\sin\left(2\right)\)
- step3: Multiply the terms:
\(12+10\sin\left(2\right)\)
- step4: Calculate the trigonometric value:
\(21.092974\)
Here are the calculated values of \( f'(c) \) at several points in the interval \((-2, 3)\):
1. \( c = -1 \):
\[
f'(-1) \approx 10.568
\]
2. \( c = 0 \):
\[
f'(0) \approx -9.093
\]
3. \( c = 1 \):
\[
f'(1) \approx 3
\]
4. \( c = 2 \):
\[
f'(2) \approx 21.093
\]
5. \( c = 3 \):
\[
f'(3) \approx 19.432
\]
Now, we can see that \( f'(-1) \) is greater than \( 8.614 \), and \( f'(0) \) is less than \( 8.614 \). This indicates that there is at least one root in the interval \((-1, 0)\).
Next, we can narrow down the search for \( c \) in the interval \((-1, 0)\) by evaluating \( f' \) at a midpoint, say \( c = -0.5 \). Let's calculate \( f'(-0.5) \).
Calculate the value by following steps:
- step0: Calculate:
\(3\left(-0.5\right)^{2}+10\sin\left(2\left(-0.5\right)-2\right)\)
- step1: Multiply the numbers:
\(3\left(-0.5\right)^{2}+10\sin\left(-1-2\right)\)
- step2: Subtract the numbers:
\(3\left(-0.5\right)^{2}+10\sin\left(-3\right)\)
- step3: Convert the expressions:
\(3\left(-\frac{1}{2}\right)^{2}+10\sin\left(-3\right)\)
- step4: Calculate:
\(3\left(-\frac{1}{2}\right)^{2}+10\left(-\sin\left(3\right)\right)\)
- step5: Multiply the terms:
\(\frac{3}{4}+10\left(-\sin\left(3\right)\right)\)
- step6: Rewrite the expression:
\(\frac{3}{4}-10\sin\left(3\right)\)
- step7: Reduce fractions to a common denominator:
\(\frac{3}{4}-\frac{10\sin\left(3\right)\times 4}{4}\)
- step8: Transform the expression:
\(\frac{3-10\sin\left(3\right)\times 4}{4}\)
- step9: Multiply the terms:
\(\frac{3-40\sin\left(3\right)}{4}\)
- step10: Calculate the trigonometric value:
\(-0.6612\)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution