7. Determine if \( M \) lies on the perpendicular bisector of \( \overline{A B} \), given: \( A(-3,2), B(5,6) \) and \( M(1,2) \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To determine if point \( M(1, 2) \) lies on the perpendicular bisector of segment \( \overline{AB} \), we can follow these steps: 1. **Find the midpoint \( P \) of segment \( \overline{AB} \)**: \[ P = \left( \frac{x_A + x_B}{2}, \frac{y_A + y_B}{2} \right) = \left( \frac{-3 + 5}{2}, \frac{2 + 6}{2} \right) = \left( \frac{2}{2}, \frac{8}{2} \right) = (1, 4) \] 2. **Calculate the slope of segment \( \overline{AB} \)**: \[ \text{slope of } \overline{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{6 - 2}{5 - (-3)} = \frac{4}{8} = \frac{1}{2} \] 3. **Determine the slope of the perpendicular bisector**: The slope of the perpendicular bisector is the negative reciprocal of the slope of \( \overline{AB} \): \[ \text{slope of perpendicular bisector} = -\frac{1}{\left(\frac{1}{2}\right)} = -2 \] 4. **Use point-slope form to find the equation of the perpendicular bisector**: Using point \( P(1, 4) \): \[ y - 4 = -2(x - 1) \] Simplifying, we have: \[ y - 4 = -2x + 2 \quad \Rightarrow \quad y = -2x + 6 \] 5. **Check if point \( M(1, 2) \) satisfies the equation of the perpendicular bisector**: Substitute \( x = 1 \) into the equation: \[ y = -2(1) + 6 = -2 + 6 = 4 \] Since the \( y \)-value we got (4) is not equal to the \( y \)-coordinate of \( M (2) \), we find that \( M \) does not lie on the perpendicular bisector of \( \overline{AB} \). In conclusion, point \( M(1, 2) \) does not lie on the perpendicular bisector of segment \( \overline{AB} \).