Question
upstudy study bank question image url

In order to evaluate the limit \( \lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{x^{2}-x}\right) \) we are required to use the Squeeze theorem. When creating bounds for the limit, which of the following functions represents an appropriate upper bound that allows us to use the Squeeze theorem.

Ask by Savage Santiago. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

An appropriate upper bound is \( |x| \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To evaluate the limit using the Squeeze theorem, we can consider that \( |\sin(t)| \leq 1 \) for all real numbers \( t \). Therefore, we can bound the sine term in your limit. This gives us: \[ |x|\sin\left(\frac{1}{x^{2}-x}\right) \leq |x| \cdot 1 = |x| \] Thus, an appropriate upper bound for the limit is \( |x| \). To apply the Squeeze theorem effectively, we also need a lower bound. Since \( \sin\left(\frac{1}{x^{2}-x}\right) \) oscillates between -1 and 1, we can conclude that: \[ -|x| \leq |x|\sin\left(\frac{1}{x^{2}-x}\right) \leq |x| \] As \( x \) approaches 0, both the upper and lower bounds tend to 0, allowing us to conclude that the limit itself must also tend to 0. Using the Squeeze theorem, we find that: \[ \lim_{x \to 0} |x|\sin\left(\frac{1}{x^{2}-x}\right) = 0. \] Isn’t that a neat application of squeezing? It’s like putting a big ol’ hug on the function right at the crucial moment!

Related Questions

\( \qquad \) . .2025 Праклнческая работа N.16. Формулы н прави Исследованне функций с помощью пронзводн A60.1bшee н нанsенbшee значення Функции. Часть 1. Формулы п правила дифференцирования. Теоретический матернал для изучения: Учебннк по алтебре н началам математнческого ана.твза (автор Мордковнч А.Г.) §28. Oтветьте на вопросы: 1. Запишнгте формулы дифферениирования (чему равны производные следуюших элеменгарных функииі̆): \( C \) (const), \( x,(k x+m),\left(x^{2}\right), \frac{1}{x^{1}} \sqrt{x}, \sin x, \cos x \) 2. Выпииите правила длфференцирования (можно в виде формул): пропзводная суммы ити разности, что можно делать с постоянным множителем, производная произведения, производная частного. 3. Запишите формулы дифференцирования функшй \( \chi^{n} \) tgx, \( \operatorname{ctg} x \). 4. Запишите правило дифференцирования функции (kx+m). Выполните залания: 1. Найдите производные следующих функиий: a) \( \left.y=x^{4}-7 x^{2} ; 6\right)^{y-8 \sqrt{x}+\frac{1}{x}} \); B) \( y=8 \operatorname{tg} x-\sin x \); r) \( y=\left(x^{2}+3\right)\left(x^{4}-1\right) \) 2. Найдите значение пронзводной функини в точке хо: a) \( y=x^{3}+8 x-4, x_{0}=1 \). (0) \( r=\frac{1}{r}-6, x_{0}=1 \) ; B) \( y=\sqrt{x}+5 . x_{n}=4 \)
Calculus Russia Feb 04, 2025

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy