(8) \( \int 4^{x} e^{2 x} d x \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the integral \( \int 4^{x} e^{2 x} d x \), we can rewrite \( 4^x \) as \( (e^{\ln 4})^x = e^{x \ln 4} \). Therefore, we have: \[ \int 4^{x} e^{2 x} d x = \int e^{x \ln 4} e^{2 x} d x = \int e^{x(\ln 4 + 2)} d x. \] Now we can use substitution to solve this integral. Let \( u = x(\ln 4 + 2) \), so \( du = (\ln 4 + 2) dx \) or \( dx = \frac{du}{\ln 4 + 2} \). Thus, the integral becomes: \[ \int e^{u} \frac{du}{\ln 4 + 2} = \frac{1}{\ln 4 + 2} e^{u} + C = \frac{1}{\ln 4 + 2} e^{x(\ln 4 + 2)} + C. \] Substituting back gives the final result: \[ \int 4^{x} e^{2 x} d x = \frac{1}{\ln 4 + 2} e^{x(\ln 4 + 2)} + C. \]