Question
upstudy study bank question image url

Calcula \( \frac{d}{d x}\left[\int_{0}^{X} \sqrt{t^{6}+4 d t}\right] \)

Ask by Griffiths Greene. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada es \( \sqrt{X^{6} + 4 d X} \).

Solution

La derivada de la integral \[ \frac{d}{d x}\left[\int_{0}^{X} \sqrt{t^{6}+4 d t}\, dt\right] \] se puede calcular aplicando el **Teorema Fundamental del Cálculo**. Este teorema establece que si \( F(X) = \int_{a}^{X} f(t)\, dt \), entonces \[ F'(X) = f(X) \] Aplicando esto al caso dado: \[ \frac{d}{d X}\left[\int_{0}^{X} \sqrt{t^{6}+4 d t}\, dt\right] = \sqrt{X^{6} + 4 d X} \] Por lo tanto, la derivada es: \[ \sqrt{X^{6} + 4 d X} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To differentiate the integral \( \frac{d}{d x}\left[\int_{0}^{X} \sqrt{t^{6}+4} \, dt\right] \), we can use the Fundamental Theorem of Calculus. This theorem states that if \( F(X) = \int_{a}^{X} f(t) \, dt \), then \( \frac{dF}{dX} = f(X) \). Here, let \( f(t) = \sqrt{t^{6} + 4} \). Therefore, we have: \[ \frac{d}{dx}\left[\int_{0}^{X} \sqrt{t^{6}+4} \, dt\right] = \sqrt{X^{6}+4} \] So, the answer is: \[ \sqrt{X^{6} + 4} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy