Question
upstudy study bank question image url

c) \( x^{2}+2 x-15=0 \)

Ask by Bates Pearson. in Mexico
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son \( x = -5 \) y \( x = 3 \).

Solution

Para resolver la ecuación cuadrática \( x^{2} + 2x - 15 = 0 \), podemos utilizar el método de factorización o la fórmula cuadrática. A continuación, se presenta la solución utilizando la factorización: **Paso 1: Identificar dos números que multiplicados den \(-15\) y que sumados den \(2\).** Buscamos dos números que cumplan con estas condiciones: - **Multiplicación:** \(5 \times (-3) = -15\) - **Suma:** \(5 + (-3) = 2\) Por lo tanto, los números son \(5\) y \(-3\). **Paso 2: Expresar la ecuación en su forma factorizada.** \[ x^{2} + 2x - 15 = 0 \\ x^{2} + 5x - 3x - 15 = 0 \\ (x^{2} + 5x) + (-3x - 15) = 0 \\ x(x + 5) - 3(x + 5) = 0 \\ (x + 5)(x - 3) = 0 \] **Paso 3: Encontrar las soluciones de la ecuación factorizada.** \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \\ x - 3 = 0 \quad \Rightarrow \quad x = 3 \] **Conclusión:** Las soluciones de la ecuación \( x^{2} + 2x - 15 = 0 \) son: \[ x = -5 \quad \text{y} \quad x = 3 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

This equation is a classic example of a quadratic equation which can be solved using the factoring method, completing the square, or using the quadratic formula! For this particular equation, it factors nicely into \( (x + 5)(x - 3) = 0 \). This shows that the solutions are \( x = -5 \) and \( x = 3 \). Quadratic equations like this show up all the time in real-world situations, such as calculating projectile trajectories or optimizing area. For example, if you're designing a garden in rectangular shape, the dimensions could be represented by such equations when maximizing space or dealing with certain restrictions—math really does blossom!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy