Given: \[ \begin{array}{l} z_{1}=3-2 i \\ z_{2}=4+3 i \\ z_{3}=a+b i \end{array} \] 1.3.1 Prove that \( \frac{z_{1} \cdot z_{3}}{z_{2}}=\frac{6 a+17 b}{25}+\frac{-17 a+6 b}{25} i \) 1.3.2 Given: \[ \frac{z_{1} \cdot z_{3}}{z_{2}}=\frac{28}{25}+\frac{29}{25} i \] Solve \( a \) and \( b \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To prove \( \frac{z_{1} \cdot z_{3}}{z_{2}}=\frac{6 a+17 b}{25}+\frac{-17 a+6 b}{25} i \), we begin by multiplying \( z_{1} \) and \( z_{3} \): \[ z_{1} \cdot z_{3} = (3 - 2i)(a + bi) = 3a + 3bi - 2ai - 2b(-1) = 3a + 2b + (3b - 2a)i \] Now, let's divide this product by \( z_{2} \): \[ z_{2} = 4 + 3i \] We multiply the numerator and denominator by the conjugate of the denominator \( 4 - 3i \): \[ \frac{(3a + 2b) + (3b - 2a)i}{4 + 3i} \cdot \frac{4 - 3i}{4 - 3i} = \frac{(3a + 2b)(4 - 3i) + (3b - 2a)i(4 - 3i)}{(4 + 3i)(4 - 3i)} \] Calculating the denominator: \[ (4 + 3i)(4 - 3i) = 16 + 9 = 25 \] Calculating the real component of the numerator: \[ (3a + 2b)(4) + (3b - 2a)(3) = 12a + 8b + 9b - 6a = (12a - 6a) + (8b + 9b) = 6a + 17b \] Now for the imaginary component: \[ (3a + 2b)(-3) + (3b - 2a)(4) = -9a - 6b + 12b - 8a = (-9a - 8a) + (-6b + 12b) = -17a + 6b \] Thus, we have: \[ \frac{z_{1} \cdot z_{3}}{z_{2}} = \frac{6a + 17b}{25} + \frac{-17a + 6b}{25} i \] For part 2, where \( \frac{z_{1} \cdot z_{3}}{z_{2}}=\frac{28}{25}+\frac{29}{25} i \), we can set up the equations: 1. \( 6a + 17b = 28 \) 2. \( -17a + 6b = 29 \) We can solve this system of equations. From the first equation, express \( b \): \[ 17b = 28 - 6a \implies b = \frac{28 - 6a}{17} \] Substituting \( b \) into the second equation: \[ -17a + 6\left(\frac{28 - 6a}{17}\right) = 29 \] Multiply through by 17 to eliminate the denominator: \[ -289a + 6(28 - 6a) = 493 \implies -289a + 168 - 36a = 493 \] \[ -325a + 168 = 493 \implies -325a = 493 - 168 \] \[ -325a = 325 \implies a = -1 \] Now substitute \( a = -1 \) back into the equation for \( b \): \[ b = \frac{28 - 6(-1)}{17} = \frac{28 + 6}{17} = \frac{34}{17} = 2 \] Thus, the solution is \( a = -1 \) and \( b = 2 \).