Question
upstudy study bank question image url

Solve by Elimination: \( \begin{array}{l}8 x+y=-16 \\ -3 x+y=-5\end{array} \)

Ask by Pena Mcguire. in Vietnam
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Ratkaisu on \( x = -1 \) ja \( y = -8 \).

Solution

Ratkaistaan yhtälöpari eliminointimenetelmällä: \[ \begin{cases} 8x + y = -16 \\ -3x + y = -5 \end{cases} \] **Vaihe 1:** Vähennetään toinen yhtälö ensimmäisestä yhtälöstä, jotta saadaan eliminoitua muuttuja \( y \). \[ (8x + y) - (-3x + y) = -16 - (-5) \] \[ 8x + y + 3x - y = -16 + 5 \] \[ 11x = -11 \] **Vaihe 2:** Ratkaistaan \( x \): \[ x = \frac{-11}{11} = -1 \] **Vaihe 3:** Sijoitetaan \( x = -1 \) toiseen yhtälöön selvittääksemme \( y \): \[ -3(-1) + y = -5 \] \[ 3 + y = -5 \] \[ y = -5 - 3 \] \[ y = -8 \] **Ratkaisu:** \[ x = -1 \\ y = -8 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the system of equations by elimination, we first want to eliminate one of the variables. Let's eliminate \(y\) by aligning the equations: 1) \(8x + y = -16\) 2) \(-3x + y = -5\) Next, we can subtract the second equation from the first to eliminate \(y\): \[ (8x + y) - (-3x + y) = -16 - (-5) \] This simplifies to: \[ 8x + 3x = -16 + 5 \] \[ 11x = -11 \] Now, solve for \(x\): \[ x = -1 \] Next, substitute \(x = -1\) back into one of the original equations to find \(y\). We'll use the second equation: \[ -3(-1) + y = -5 \] This simplifies to: \[ 3 + y = -5 \] Now, solve for \(y\): \[ y = -5 - 3 \] \[ y = -8 \] Thus, the solution to the system of equations is: \[ x = -1, \quad y = -8 \] So, the solution to the system of equations is \((-1, -8)\).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy