3. Choose \( y \) in order that the vectors \( \vec{a}=7 \hat{i}+y \hat{j}+\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}+\hat{k} \), \( \vec{c}=5 \hat{i}+3 \hat{j}+\hat{k} \) are linearly dependent.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To determine the value of \( y \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are linearly dependent, we can set up a condition based on the determinant of the matrix formed by the components of the vectors. The vectors are linearly dependent if the following determinant is zero: \[ \begin{vmatrix} 7 & y & 1 \\ 3 & 2 & 1 \\ 5 & 3 & 1 \end{vmatrix} = 0 \] Calculating this determinant: 1. Expanding the determinant using the first row: \[ = 7 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} - y \begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix} + 1 \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} \] 2. Calculating the 2x2 determinants: \[ \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = (2)(1) - (1)(3) = 2 - 3 = -1 \] \[ \begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix} = (3)(1) - (1)(5) = 3 - 5 = -2 \] \[ \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = (3)(3) - (2)(5) = 9 - 10 = -1 \] 3. Plugging these back into the determinant: \[ = 7(-1) - y(-2) + 1(-1) \] \[ = -7 + 2y - 1 \] \[ = 2y - 8 \] Setting the determinant equal to zero for linear dependence: \[ 2y - 8 = 0 \] 4. Solving for \( y \): \[ 2y = 8 \\ y = 4 \] Thus, the value of \( y \) that makes the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) linearly dependent is \( y = 4 \).