Question
upstudy study bank question image url

Fully simplify the expression below. \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \div\left(10 h^{2} k^{-3}\right)^{-2} \] Give your answer as a fraction without any negative indices.

Ask by Paul Vargas. in Spain
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{400\, h^{19}}{k^{15}} \]

Solution

To simplify the expression: \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \div\left(10 h^{2} k^{-3}\right)^{-2} \] **Step-by-Step Simplification:** 1. **Rewrite the Division as Multiplication:** \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \times \left(10 h^{2} k^{-3}\right)^{2} \] 2. **Expand the Exponents:** \[ \left(10 h^{2} k^{-3}\right)^{2} = 10^{2} h^{4} k^{-6} = 100 h^{4} k^{-6} \] 3. **Combine All Terms:** \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \times 100 h^{4} k^{-6} \] 4. **Multiply the Coefficients:** \[ 4 \times 100 = 400 \] 5. **Add the Exponents for Like Bases:** \[ h^{9 + 6 + 4} = h^{19} \\ k^{-4 -5 -6} = k^{-15} \] 6. **Combine Everything:** \[ 400 h^{19} k^{-15} \] 7. **Express with Positive Exponents:** \[ \frac{400 h^{19}}{k^{15}} \] **Final Simplified Expression:** \[ \frac{400\, h^{19}}{k^{15}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \div\left(10 h^{2} k^{-3}\right)^{-2}, \] let's break it down step-by-step. 1. **Simplifying the divisor**: First, calculate \((10 h^{2} k^{-3})^{-2}\): \[ (10 h^{2} k^{-3})^{-2} = 10^{-2} (h^{2})^{-2} (k^{-3})^{-2} = \frac{1}{100} h^{-4} k^{6}. \] This is equivalent to: \[ \frac{h^{-4} k^{6}}{100}. \] 2. **Rewriting the division**: Now, rewrite the entire expression: \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \div \frac{h^{-4} k^{6}}{100} = h^{9} k^{-4} \times 4 h^{6} k^{-5} \times \frac{100}{h^{-4} k^{6}}. \] 3. **Multiplying by the reciprocal**: Combine the terms: \[ h^{9} k^{-4} \times 4 h^{6} k^{-5} \times 100 = 400 h^{9} h^{6} k^{-4} k^{-5}. \] 4. **Combine like bases**: Combine \(h\) and \(k\): \[ 400 h^{9+6} k^{-4-5} = 400 h^{15} k^{-9}. \] 5. **Getting rid of the negative exponent**: To eliminate the negative exponent, we write: \[ 400 h^{15} k^{-9} = \frac{400 h^{15}}{k^{9}}. \] Thus, the fully simplified expression is: \[ \frac{400 h^{15}}{k^{9}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy