Question
upstudy study bank question image url

\( 1 \leftarrow \) Find each of the following products. Write the answers in simplest form. \( \begin{array}{ll}\text { a. } \frac{33}{77} \cdot \frac{33}{132} & \text { b. } \frac{a}{v} \cdot \frac{v^{2}}{a^{2}} \quad \text { c. } \frac{q x}{t} \cdot \frac{t^{2} n}{q^{3} x^{2}} \\ \text { a. } \frac{33}{77} \cdot \frac{33}{132}=\square \text { (Type an integer or a simplified fraction.) }\end{array} \)

Ask by Burns Montgomery. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The product is \( \frac{3}{28} \).

Solution

Calculate or simplify the expression \( \frac{33}{77} \cdot \frac{33}{132} \). Calculate the value by following steps: - step0: Calculate: \(\frac{33}{77}\times \frac{33}{132}\) - step1: Reduce the numbers: \(\frac{1}{7}\times \frac{3}{4}\) - step2: Multiply the fractions: \(\frac{3}{7\times 4}\) - step3: Multiply: \(\frac{3}{28}\) The product of \( \frac{33}{77} \) and \( \frac{33}{132} \) is \( \frac{3}{28} \) or approximately \( 0.107142857 \) in decimal form.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the products, let's simplify each one step by step. **a.** For \( \frac{33}{77} \cdot \frac{33}{132} \): First, simplify the fractions individually. - \( \frac{33}{77} = \frac{33 \div 11}{77 \div 11} = \frac{3}{7} \) - \( \frac{33}{132} = \frac{33 \div 33}{132 \div 33} = \frac{1}{4} \) Now, multiply the simplified fractions: \[ \frac{3}{7} \cdot \frac{1}{4} = \frac{3 \cdot 1}{7 \cdot 4} = \frac{3}{28} \] So, \( \frac{33}{77} \cdot \frac{33}{132} = \frac{3}{28} \). **b.** For \( \frac{a}{v} \cdot \frac{v^{2}}{a^{2}} \): Multiply the fractions directly: \[ \frac{a}{v} \cdot \frac{v^{2}}{a^{2}} = \frac{a \cdot v^2}{v \cdot a^2} = \frac{a \cdot v^{2}}{a^{2} \cdot v} \] Now, simplify by canceling \( a \) and \( v \): \[ = \frac{v}{a} \] So, \( \frac{a}{v} \cdot \frac{v^{2}}{a^{2}} = \frac{v}{a} \). **c.** For \( \frac{qx}{t} \cdot \frac{t^{2}n}{q^{3}x^{2}} \): Multiply the fractions directly: \[ \frac{qx}{t} \cdot \frac{t^{2}n}{q^{3}x^{2}} = \frac{qx \cdot t^{2}n}{t \cdot q^{3}x^{2}} = \frac{q \cdot x \cdot t^{2}n}{t \cdot q^{3}x^{2}} \] Now, simplify by canceling: 1. One \( t \) from \( t^{2} \) gives \( t \). 2. One \( q \) gives \( \frac{1}{q^{2}} \) as \( q^{3} \) becomes \( q^{2} \). 3. One \( x \) gives \( \frac{1}{x} \) as \( x^{2} \) becomes \( x \). Putting it all together: \[ = \frac{tn}{q^{2}x} \] So, \( \frac{qx}{t} \cdot \frac{t^{2}n}{q^{3}x^{2}} = \frac{tn}{q^{2}x} \). Overall, here’s your summary: a. \( \frac{33}{77} \cdot \frac{33}{132} = \frac{3}{28} \) b. \( \frac{a}{v} \cdot \frac{v^{2}}{a^{2}} = \frac{v}{a} \) c. \( \frac{qx}{t} \cdot \frac{t^{2}n}{q^{3}x^{2}} = \frac{tn}{q^{2}x} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy