Question
upstudy study bank question image url

Por lo tanto, la distancia recorrida por el motociclista después de 4 segundos es de 16 metros. 24. Calcula la aceleración de un auto que parte del reposo y alcanza una velocidad final de \( 20 \mathrm{~m} / \mathrm{s} \). En un tiempo de 4 seg.

Ask by Maxwell Wright. in Mexico
Jan 10,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La aceleración del auto es de \( 5 \, \mathrm{m/s}^2 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

Para calcular la aceleración del auto, utilizamos la fórmula de aceleración \( a = \frac{v_f - v_i}{t} \), donde \( v_f \) es la velocidad final (20 m/s), \( v_i \) es la velocidad inicial (0 m/s, ya que parte del reposo), y \( t \) es el tiempo (4 segundos). Al sustituir los valores en la fórmula, obtenemos: \[ a = \frac{20 \, \text{m/s} - 0 \, \text{m/s}}{4 \, \text{s}} = \frac{20 \, \text{m/s}}{4 \, \text{s}} = 5 \, \text{m/s}^2. \] La aceleración del auto es de \( 5 \, \text{m/s}^2 \). Un dato curioso sobre las aceleraciones es que en el mundo de los deportes, como el automovilismo o el motociclismo, los profesionales entrenan no solo para aumentar su velocidad, sino también para optimizar cómo aceleran y desaceleran. Una buena comprensión de la aceleración los ayuda a tomar mejores decisiones en las curvas y en el momento de adelantar. Además, es importante recordar que la aceleración no siempre es constante. En situaciones de conducción real, factores como la tracción de las llantas, el tipo de superficie y la inclinación de la carretera afectan cómo un vehículo puede acelerar. Por lo tanto, entender la física detrás de la aceleración también puede ayudar a los conductores a ser más seguros en la carretera.

Related Questions

EXERCICE 3 : ( 5 points) Au cours d'une promenade ton voisin de classe a assisté à une scène. Il a vu un enfant qui s'amusait à plonger dans l'eau d'une rivière à partir du point \( C_{0} \) d'un rocher. Cet enfant, considéré comme un point matériel, voulait attraper un ballon flottant au point \( \vec{A} d{ }^{-1} \) cettel rivière. Ton voisin veut déterminer la valeur de la vitesse \( \vec{V}_{0} \) avec laquelle l'enfant a fait ce plongeon du point de départ \( \mathrm{C}_{0} \) jusqu'au point A (voir schéma ci-contre). A la date \( t=0 \) s, l'enfant s'est élancé du rocher avec une vitesse \( \overrightarrow{V_{0}} \), de valeur \( V_{0} \), incliné d'un angle \( \alpha 0 \) par rapport à l'horizontale. La valeur \( V_{0} \) peut varier et le mouvement du centre d'inertie \( C \) de l'enfant s'effectue dans le référentiel terrestre supposé galiléen muni du repère \( (0, \vec{\imath}, \vec{j}) \). A la date \( t=O \) s, le centre d'inertie de l'enfant, de masse \( m \), est en \( C_{0} \) tel que \( O C_{0}=2 \mathrm{~m} \). Les frottements contre l'air sont négligés lors du plongeon de cet enfant. Données: \( g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} ; \alpha_{0}=45^{\circ} ; \quad O A=2 \mathrm{~m} \) Ton voisin te sollicite pour la détermination de \( V_{0} \). 1. Montre qu'au cours de son plongeon, le vecteur accélération \( \vec{a} \) de l'enfant est égal au vecteur champ de pesanteur uniforme \( \vec{g} \). 2. Détermine les équations horaires du mouvement de l'enfant dans le repère \( (0, \vec{\imath}, \vec{\jmath}) \). 3. Etablis l'équation littérale de la trajectoire \( y=f(x) \) de l'enfant dans le repère \( (0, \vec{\imath}, \vec{j}) \). 4. Détermine les coordonnées \( X_{A} \) et \( Y_{A} \) de l'enfant lorsqu'il arrive au point \( A \) où se trouve le ballon. 5. Déduis de la réponse à la question précédente la valeur de \( V_{0} \) pour qu'à l'issu de ce plongeon l'enfant se retrouve au point A de cette rivière.
Physics Côte d'Ivoire Jan 22, 2025

Latest Physics Questions

EXERCICE 3 : ( 5 points) Au cours d'une promenade ton voisin de classe a assisté à une scène. Il a vu un enfant qui s'amusait à plonger dans l'eau d'une rivière à partir du point \( C_{0} \) d'un rocher. Cet enfant, considéré comme un point matériel, voulait attraper un ballon flottant au point \( \vec{A} d{ }^{-1} \) cettel rivière. Ton voisin veut déterminer la valeur de la vitesse \( \vec{V}_{0} \) avec laquelle l'enfant a fait ce plongeon du point de départ \( \mathrm{C}_{0} \) jusqu'au point A (voir schéma ci-contre). A la date \( t=0 \) s, l'enfant s'est élancé du rocher avec une vitesse \( \overrightarrow{V_{0}} \), de valeur \( V_{0} \), incliné d'un angle \( \alpha 0 \) par rapport à l'horizontale. La valeur \( V_{0} \) peut varier et le mouvement du centre d'inertie \( C \) de l'enfant s'effectue dans le référentiel terrestre supposé galiléen muni du repère \( (0, \vec{\imath}, \vec{j}) \). A la date \( t=O \) s, le centre d'inertie de l'enfant, de masse \( m \), est en \( C_{0} \) tel que \( O C_{0}=2 \mathrm{~m} \). Les frottements contre l'air sont négligés lors du plongeon de cet enfant. Données: \( g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} ; \alpha_{0}=45^{\circ} ; \quad O A=2 \mathrm{~m} \) Ton voisin te sollicite pour la détermination de \( V_{0} \). 1. Montre qu'au cours de son plongeon, le vecteur accélération \( \vec{a} \) de l'enfant est égal au vecteur champ de pesanteur uniforme \( \vec{g} \). 2. Détermine les équations horaires du mouvement de l'enfant dans le repère \( (0, \vec{\imath}, \vec{\jmath}) \). 3. Etablis l'équation littérale de la trajectoire \( y=f(x) \) de l'enfant dans le repère \( (0, \vec{\imath}, \vec{j}) \). 4. Détermine les coordonnées \( X_{A} \) et \( Y_{A} \) de l'enfant lorsqu'il arrive au point \( A \) où se trouve le ballon. 5. Déduis de la réponse à la question précédente la valeur de \( V_{0} \) pour qu'à l'issu de ce plongeon l'enfant se retrouve au point A de cette rivière.
Physics Côte d'Ivoire Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy