09. Разложите двучлен на множители: \( \begin{array}{lll}\text { а) } m^{3}-1 ; & \text { б) } p^{3}-27 q^{3} ; & \text { в) } 125 x^{3}-8 y^{3} \\ \text { г) } 64 a^{3}+1000 b^{3} ; & \text { д) } x^{6}-y^{6} ; & \text { е) } m^{12}-64 ; \\ \text { ж) } x^{9}-x^{6} ; & \text { 3) } c^{6} d^{3}-k^{3} & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Для разложения данных двучленов на множители воспользуемся известными формулами разложения кубов и разности квадратов: \( \text{а) } m^{3}-1 = (m-1)(m^{2}+m+1) \) \( \text{б) } p^{3}-27q^{3} = (p-3q)(p^{2}+3pq+9q^{2}) \) \( \text{в) } 125x^{3}-8y^{3} = (5x-2y)(25x^{2}+10xy+4y^{2}) \) \( \text{г) } 64a^{3}+1000b^{3} = (4a+10b)(16a^{2}-40ab+100b^{2}) \) \( \text{д) } x^{6}-y^{6} = (x^{3}-y^{3})(x^{3}+y^{3}) = (x-y)(x^{2}+xy+y^{2})(x^{3}+y^{3}) \) \( \text{е) } m^{12}-64 = (m^{6}-8)(m^{6}+8) = (m^{6}-2^{3})(m^{6}+2^{3}) \) \( \text{ж) } x^{9}-x^{6} = x^{6}(x^{3}-1) = x^{6}(x-1)(x^{2}+x+1) \) \( \text{з) } c^{6}d^{3}-k^{3} = (c^{2}d- k)(c^{4}d^{2}+c^{2}dk+k^{2}) \)