6. Solve each of these equations and check each solution: \( \begin{array}{ll}\text { (i) } \sqrt{x+5}=5-\sqrt{x} & \text { (ii) } \sqrt{5 x+6}=\sqrt{2 x}+2 \\ \text { (iii) } \sqrt{x+7}+\sqrt{x}=7 & \text { (iv) } \sqrt{3 x-2}=\sqrt{x-2}+2\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the equations, we first isolate the square root when necessary and square both sides to eliminate the square roots. Let’s go through each one step by step. **(i)** \( \sqrt{x+5} = 5 - \sqrt{x} \) 1. Square both sides: \( x + 5 = (5 - \sqrt{x})^2 = 25 - 10\sqrt{x} + x \) 2. Rearranging gives: \( 10\sqrt{x} = 20 \) 3. Simplifying gives: \( \sqrt{x} = 2 \) 4. Squaring results in: \( x = 4 \) **Check:** Substituting \( x = 4 \) back gives \( \sqrt{4 + 5} = \sqrt{9} = 3 \) and \( 5 - \sqrt{4} = 5 - 2 = 3 \). Both sides match, so \( x = 4 \) is valid. --- **(ii)** \( \sqrt{5x + 6} = \sqrt{2x} + 2 \) 1. Square both sides: \( 5x + 6 = (\sqrt{2x} + 2)^2 = 2x + 4\sqrt{2x} + 4 \) 2. Rearranging gives: \( 3x + 2 = 4\sqrt{2x} \) 3. Now square both sides again: \( (3x + 2)^2 = 16(2x) \) 4. Expanding leads to \( 9x^2 + 12x + 4 = 32x \) or \( 9x^2 - 20x + 4 = 0 \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 9, b = -20, c = 4 \), gives: - \( D = (-20)^2 - 4 \cdot 9 \cdot 4 = 400 - 144 = 256 \) - \( x = \frac{20 \pm 16}{18} \rightarrow x = 2, \frac{2}{9} \) **Check:** - For \( x = 2 \): LHS \( \sqrt{5(2) + 6} = \sqrt{16} = 4 \), RHS \( \sqrt{2(2)} + 2 = 4 \). Valid. - For \( x = \frac{2}{9} \): LHS \( \sqrt{5(\frac{2}{9}) + 6} \), RHS \( \sqrt{2(\frac{2}{9})} + 2 \) does not check out; discard. Final solutions: \( x = 2 \). --- **(iii)** \( \sqrt{x + 7} + \sqrt{x} = 7 \) 1. Isolate \( \sqrt{x + 7} \): \( \sqrt{x + 7} = 7 - \sqrt{x} \) 2. Square both sides: \( x + 7 = (7 - \sqrt{x})^2 = 49 - 14\sqrt{x} + x \) 3. Rearranging gives: \( 14\sqrt{x} = 42 \), or \( \sqrt{x} = 3 \) 4. Therefore, squaring gives \( x = 9 \) **Check:** Substituting \( x = 9 \) gives \( \sqrt{9 + 7} + \sqrt{9} = \sqrt{16} + 3 = 4 + 3 = 7 \). Valid solution. --- **(iv)** \( \sqrt{3x - 2} = \sqrt{x - 2} + 2 \) 1. Square both sides: \( 3x - 2 = (\sqrt{x - 2} + 2)^2 = x - 2 + 4\sqrt{x - 2} + 4 \) 2. Rearranging gives: \( 2x - 4 = 4\sqrt{x - 2} \) 3. Isolate the square root: \( \sqrt{x - 2} = \frac{x - 2}{2} \) 4. Square again: \( x - 2 = \frac{(x - 2)^2}{4} \) results in a quadratic: \( 4(x - 2) = (x - 2)^2 \) 5. This simplifies to: \( x^2 - 6x