\( \left. \begin{array} { l } { \operatorname { tag } 30 ^ { \circ } \times \sin 45 ^ { \circ } + \cos 30 ^ { \circ } } \\ { 2 \cos 60 ^ { \circ } \times \sin ^ { 2 } 60 ^ { \circ } - 2 \operatorname { cotang } y ^ { 2 } 60 } \end{array} \right. \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's break it down! The first part, \( \tan 30^{\circ} \times \sin 45^{\circ} + \cos 30^{\circ} \), leverages some classic trigonometric values: \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \), \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \), and \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \). When you plug those in, it’s a fun little adventure into numerical approximations! Now let's venture into the second part, \( 2 \cos 60^{\circ} \times \sin^{2} 60^{\circ} - 2 \cot y^{2} 60 \). Remember, \( \cos 60^{\circ} = \frac{1}{2} \) and \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \), which means you’ll encounter squared sine values! And don’t forget, for cotangent, you’ll need to take that friendly reciprocal of tangent along the way. It’s all about figuring out where those angles take you!