Question
upstudy study bank question image url

\( \left. \begin{array} { l } { \operatorname { tag } 30 ^ { \circ } \times \sin 45 ^ { \circ } + \cos 30 ^ { \circ } } \\ { 2 \cos 60 ^ { \circ } \times \sin ^ { 2 } 60 ^ { \circ } - 2 \operatorname { cotang } y ^ { 2 } 60 } \end{array} \right. \)

Ask by Mcfarlane Pearson. in Guinea-Bissau
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

A primeira expressão é aproximadamente 1,2742 e a segunda expressão é aproximadamente 0,0834.

Solution

Claro! Vamos avaliar cada uma das expressões passo a passo. --- ### **Primeira Expressão:** \[ \tan(30^\circ) \times \sin(45^\circ) + \cos(30^\circ) \] **Passo 1:** Calcular os valores das funções trigonométricas. - \(\tan(30^\circ) = \frac{1}{\sqrt{3}} \approx 0,5774\) - \(\sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0,7071\) - \(\cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0,8660\) **Passo 2:** Substituir os valores na expressão. \[ \tan(30^\circ) \times \sin(45^\circ) + \cos(30^\circ) \approx 0,5774 \times 0,7071 + 0,8660 \] \[ \approx 0,4082 + 0,8660 = 1,2742 \] --- ### **Segunda Expressão:** \[ 2 \cos(60^\circ) \times \sin^{2}(60^\circ) - 2 \cot^{2}(60^\circ) \] **Passo 1:** Calcular os valores das funções trigonométricas. - \(\cos(60^\circ) = \frac{1}{2} = 0,5\) - \(\sin(60^\circ) = \frac{\sqrt{3}}{2} \approx 0,8660\) - \(\sin^{2}(60^\circ) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} = 0,75\) - \(\cot(60^\circ) = \frac{1}{\tan(60^\circ)} = \frac{1}{\sqrt{3}} \approx 0,5774\) - \(\cot^{2}(60^\circ) = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \approx 0,3333\) **Passo 2:** Substituir os valores na expressão. \[ 2 \times 0,5 \times 0,75 - 2 \times 0,3333 \] \[ = 1 \times 0,75 - 0,6666 \] \[ = 0,75 - 0,6666 = 0,0834 \] --- ### **Resultados Finais:** - **Primeira Expressão:** \( \approx 1,2742 \) - **Segunda Expressão:** \( \approx 0,0834 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's break it down! The first part, \( \tan 30^{\circ} \times \sin 45^{\circ} + \cos 30^{\circ} \), leverages some classic trigonometric values: \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \), \( \sin 45^{\circ} = \frac{\sqrt{2}}{2} \), and \( \cos 30^{\circ} = \frac{\sqrt{3}}{2} \). When you plug those in, it’s a fun little adventure into numerical approximations! Now let's venture into the second part, \( 2 \cos 60^{\circ} \times \sin^{2} 60^{\circ} - 2 \cot y^{2} 60 \). Remember, \( \cos 60^{\circ} = \frac{1}{2} \) and \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \), which means you’ll encounter squared sine values! And don’t forget, for cotangent, you’ll need to take that friendly reciprocal of tangent along the way. It’s all about figuring out where those angles take you!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy