Answer
The expanded form of the expression is:
\[
\frac{1}{3}x^{5} - \frac{8}{9}x^{4}y - \frac{1}{3}\frac{x^{3}}{y^{2}} - \frac{1}{2}\frac{x^{2}}{y^{2}} + \frac{4}{3}\frac{x}{y} + \frac{1}{2}\frac{1}{y^{4}}
\]
Solution
Certainly! Let's expand the given expression step by step.
**Given Expression:**
\[
\left( \frac{2}{3}x^3 - \frac{1}{y^2} \right) \left( \frac{1}{2}x^2 - \frac{4}{3}xy - \frac{1}{2}y^2 \right) \quad \text{where } y \neq 0
\]
**Step 1: Distribute Each Term in the First Parenthesis with Each Term in the Second Parenthesis**
We'll use the distributive property (also known as the FOIL method for binomials) to multiply each term in the first polynomial by each term in the second polynomial.
\[
\begin{align*}
& \left( \frac{2}{3}x^3 \right) \left( \frac{1}{2}x^2 \right) + \left( \frac{2}{3}x^3 \right) \left( -\frac{4}{3}xy \right) + \left( \frac{2}{3}x^3 \right) \left( -\frac{1}{2}y^2 \right) \\
& + \left( -\frac{1}{y^2} \right) \left( \frac{1}{2}x^2 \right) + \left( -\frac{1}{y^2} \right) \left( -\frac{4}{3}xy \right) + \left( -\frac{1}{y^2} \right) \left( -\frac{1}{2}y^2 \right)
\end{align*}
\]
**Step 2: Multiply the Terms**
\[
\begin{align*}
& \frac{2}{3} \times \frac{1}{2} x^{3+2} + \frac{2}{3} \times -\frac{4}{3} x^{3+1}y + \frac{2}{3} \times -\frac{1}{2} x^3 y^2 \\
& + -\frac{1}{y^2} \times \frac{1}{2}x^2 + -\frac{1}{y^2} \times -\frac{4}{3}xy + -\frac{1}{y^2} \times -\frac{1}{2}y^2 \\
= \quad & \frac{1}{3}x^5 - \frac{8}{9}x^4y - \frac{1}{3}x^3y^{-2} - \frac{1}{2}x^2y^{-2} + \frac{4}{3}xy^{-1} + \frac{1}{2}y^{-4}
\end{align*}
\]
**Step 3: Simplify the Expression**
Combining all the terms, the expanded form of the original expression is:
\[
\frac{1}{3}x^5 - \frac{8}{9}x^4y - \frac{1}{3}\frac{x^3}{y^2} - \frac{1}{2}\frac{x^2}{y^2} + \frac{4}{3}\frac{x}{y} + \frac{1}{2}\frac{1}{y^4}
\]
**Final Expanded Expression:**
\[
\boxed{\,\frac{1}{3}x^{5} - \frac{8}{9}x^{4}y - \frac{1}{3}\frac{x^{3}}{y^{2}} - \frac{1}{2}\frac{x^{2}}{y^{2}} + \frac{4}{3}\frac{x}{y} + \frac{1}{2}\frac{1}{y^{4}}\,}
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution