Question
upstudy study bank question image url

(3) \( \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \)

Ask by Todd Rodriguez. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{1}{2} \).

Solution

To simplify the expression: \[ \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \] Let's break it down step by step by expressing all terms in terms of their prime factors. 1. **Express Each Term with Prime Factors:** - \( 18 = 2 \times 3^2 \) - \( 6 = 2 \times 3 \) - \( 9 = 3^2 \) 2. **Rewrite the Numerator and the Denominator:** - **Numerator:** \[ 3^{x+3} \cdot 18^{x} = 3^{x+3} \cdot (2 \times 3^2)^x = 3^{x+3} \cdot 2^x \cdot 3^{2x} = 2^x \cdot 3^{3x+3} \] - **Denominator:** \[ 6^{x+1} \cdot 9^{x+1} = (2 \times 3)^{x+1} \cdot (3^2)^{x+1} = 2^{x+1} \cdot 3^{x+1} \cdot 3^{2x+2} = 2^{x+1} \cdot 3^{3x+3} \] 3. **Simplify the Fraction:** \[ \frac{2^x \cdot 3^{3x+3}}{2^{x+1} \cdot 3^{3x+3}} = \frac{2^x}{2^{x+1}} \cdot \frac{3^{3x+3}}{3^{3x+3}} = 2^{-1} \cdot 1 = \frac{1}{2} \] **Final Simplified Form:** \[ \frac{1}{2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \( \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \), we first express all terms in the numerator and denominator in terms of powers of 3. 1. **Rewrite the bases**: - \( 18 = 2 \cdot 3^2 \) - \( 6 = 2 \cdot 3 \) - \( 9 = 3^2 \) 2. **Substituting**: - \( 18^x = (2 \cdot 3^2)^x = 2^x \cdot 3^{2x} \) - \( 6^{x+1} = (2 \cdot 3)^{x+1} = 2^{x+1} \cdot 3^{x+1} \) - \( 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x + 2} \) 3. **Rewrite the expression**: The expression now looks like this: \[ \frac{3^{x+3} \cdot (2^{x} \cdot 3^{2x})}{(2^{x+1} \cdot 3^{x+1}) \cdot 3^{2x+2}} \] 4. **Combine the powers in the numerator**: - In the numerator: \( 3^{x+3 + 2x} = 3^{3x + 3} \) - And the \( 2^x \) stays as is: \( 2^x \) 5. **Combine the denominator**: - In the denominator: \( 2^{x+1} \cdot 3^{x + 2x + 2} = 2^{x+1} \cdot 3^{3x + 2} \) 6. **Put it all together**: \[ = \frac{2^x \cdot 3^{3x + 3}}{2^{x + 1} \cdot 3^{3x + 2}} \] 7. **Simplify further**: - The \( 3^{3x + 3} \) over \( 3^{3x + 2} \) gives \( 3^1 = 3 \). - The \( \frac{2^x}{2^{x+1}} \) leads to \( \frac{2^x}{2^x \cdot 2} = \frac{1}{2} \). 8. **Final simplification**: \[ \frac{3}{2} \] Thus, the simplified expression is: \[ \frac{3}{2} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy