Question
upstudy study bank question image url

4.) Determine the determinant of the matrix \( \left[\begin{array}{cccc}1 & -1 & 8 & 4 \\ 2 & 6 & 0 & -4 \\ 2 & 0 & 2 & 6 \\ 0 & 2 & 8 & 0\end{array}\right] \).

Ask by Chan Nunez. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The determinant of the matrix is \(-336\).

Solution

To determine the determinant of the matrix \[ A = \begin{bmatrix} 1 & -1 & 8 & 4 \\ 2 & 6 & 0 & -4 \\ 2 & 0 & 2 & 6 \\ 0 & 2 & 8 & 0 \end{bmatrix}, \] we can perform a series of row operations to simplify the matrix to an upper triangular form. The determinant of an upper triangular matrix is the product of its diagonal elements. **Step 1: Eliminate Below the First Pivot** 1. **Row 2 (R2):** Subtract 2 times Row 1 from Row 2: \[ R2 \leftarrow R2 - 2R1 = [2 - 2(1),\ 6 - 2(-1),\ 0 - 2(8),\ -4 - 2(4)] = [0, 8, -16, -12] \] 2. **Row 3 (R3):** Subtract 2 times Row 1 from Row 3: \[ R3 \leftarrow R3 - 2R1 = [2 - 2(1),\ 0 - 2(-1),\ 2 - 2(8),\ 6 - 2(4)] = [0, 2, -14, -2] \] 3. **Row 4 (R4):** No change needed as the first element is already 0. The matrix now looks like: \[ \begin{bmatrix} 1 & -1 & 8 & 4 \\ 0 & 8 & -16 & -12 \\ 0 & 2 & -14 & -2 \\ 0 & 2 & 8 & 0 \end{bmatrix} \] **Step 2: Eliminate Below the Second Pivot** 1. **Row 3 (R3):** Subtract \(\frac{1}{4}\) times Row 2 from Row 3: \[ R3 \leftarrow R3 - \frac{1}{4}R2 = [0, 2 - 2, -14 + 4, -2 + 3] = [0, 0, -10, 1] \] 2. **Row 4 (R4):** Subtract \(\frac{1}{4}\) times Row 2 from Row 4: \[ R4 \leftarrow R4 - \frac{1}{4}R2 = [0, 2 - 2, 8 + 4, 0 + 3] = [0, 0, 12, 3] \] The matrix now looks like: \[ \begin{bmatrix} 1 & -1 & 8 & 4 \\ 0 & 8 & -16 & -12 \\ 0 & 0 & -10 & 1 \\ 0 & 0 & 12 & 3 \end{bmatrix} \] **Step 3: Eliminate Below the Third Pivot** 1. **Row 4 (R4):** Add \(\frac{6}{5}\) times Row 3 to Row 4 to eliminate the 12 in the third column: \[ R4 \leftarrow R4 + \frac{6}{5}R3 = [0, 0, 12 - 12, 3 + \frac{6}{5}] = [0, 0, 0, \frac{21}{5}] \] The matrix is now upper triangular: \[ \begin{bmatrix} 1 & -1 & 8 & 4 \\ 0 & 8 & -16 & -12 \\ 0 & 0 & -10 & 1 \\ 0 & 0 & 0 & \frac{21}{5} \end{bmatrix} \] **Step 4: Calculate the Determinant** The determinant of an upper triangular matrix is the product of its diagonal elements: \[ \text{det}(A) = 1 \times 8 \times (-10) \times \frac{21}{5} = 1 \times 8 \times (-10) \times 4.2 = -336 \] **Final Answer:** The determinant of the matrix is \(-336\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the determinant of the matrix \[ A = \begin{bmatrix} 1 & -1 & 8 & 4 \\ 2 & 6 & 0 & -4 \\ 2 & 0 & 2 & 6 \\ 0 & 2 & 8 & 0 \end{bmatrix}, \] we can use the method of cofactor expansion along the first row or any convenient row or column. Here, I'll expand along the first row for clarity: \[ \text{det}(A) = 1 \cdot M_{11} - (-1) \cdot M_{12} + 8 \cdot M_{13} + 4 \cdot M_{14}, \] where \(M_{ij}\) is the minor of element \(a_{ij}\). Let's compute the minors: 1. **Minor \(M_{11}\)** (remove first row and first column): \[ M_{11} = \begin{vmatrix} 6 & 0 & -4 \\ 0 & 2 & 6 \\ 2 & 8 & 0 \end{vmatrix}. \] Expanding along the first row: \[ = 6 \begin{vmatrix} 2 & 6 \\ 8 & 0 \end{vmatrix} + 0 -4 \begin{vmatrix} 0 & 2 \\ 2 & 8 \end{vmatrix}. \] Finding each 2x2 determinant: \[ \begin{vmatrix} 2 & 6 \\ 8 & 0 \end{vmatrix} = 2 \cdot 0 - 6 \cdot 8 = -48, \] \[ \begin{vmatrix} 0 & 2 \\ 2 & 8 \end{vmatrix} = 0 \cdot 8 - 2 \cdot 2 = -4. \] So: \[ M_{11} = 6(-48) + 0 -4(-4) = -288 + 16 = -272. \] 2. **Minor \(M_{12}\)** (remove first row and second column): \[ M_{12} = \begin{vmatrix} 2 & 0 & -4 \\ 2 & 2 & 6 \\ 0 & 8 & 0 \end{vmatrix}. \] Expanding along the first row: \[ = 2 \begin{vmatrix} 2 & 6 \\ 8 & 0 \end{vmatrix} - 0 + 4 \begin{vmatrix} 2 & 2 \\ 0 & 8 \end{vmatrix}. \] We already calculated \( \begin{vmatrix} 2 & 6 \\ 8 & 0 \end{vmatrix} = -48\), so: \[ = 2(-48) + 4(2 \cdot 8 - 2 \cdot 0) = -96 + 64 = -32. \] 3. **Minor \(M_{13}\)** (remove first row and third column): \[ M_{13} = \begin{vmatrix} 2 & 6 & -4 \\ 2 & 0 & 6 \\ 0 & 2 & 0 \end{vmatrix}. \] Expanding along the first row: \[ = 2 \begin{vmatrix} 0 & 6 \\ 2 & 0 \end{vmatrix} - 6 \begin{vmatrix} 2 & -4 \\ 0 & 0 \end{vmatrix} - 4 \begin{vmatrix} 2 & 6 \\ 0 & 2 \end{vmatrix}. \] Finding the determinant: \[ \begin{vmatrix} 0 & 6 \\ 2 & 0 \end{vmatrix} = 0 \cdot 0 - 6 \cdot 2 = -12, \] \[ \begin{vmatrix} 2 & -4 \\ 0 & 0 \end

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy