Given that \( f(x)=(x-6)^{2} \) and \( g(x)=5-3 x \), find (a) \( (f+g)(-1)=\square \) (b) \( (f-g)(-1)=\square \) (c) \( (f g)(-1)=\square \) (d) \( \left(\frac{f}{g}\right)(-1)=\square \) Question Help: Video Submit Question
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the values of \( (f+g)(-1) \), \( (f-g)(-1) \), \( (fg)(-1) \), and \( \left(\frac{f}{g}\right)(-1) \), we first need to evaluate \( f(-1) \) and \( g(-1) \). 1. Evaluating \( f(-1) \): \[ f(-1) = (-1 - 6)^2 = (-7)^2 = 49 \] 2. Evaluating \( g(-1) \): \[ g(-1) = 5 - 3(-1) = 5 + 3 = 8 \] Now, we can find each expression. (a) \( (f+g)(-1) = f(-1) + g(-1) = 49 + 8 = 57 \) (b) \( (f-g)(-1) = f(-1) - g(-1) = 49 - 8 = 41 \) (c) \( (fg)(-1) = f(-1) \cdot g(-1) = 49 \cdot 8 = 392 \) (d) \( \left(\frac{f}{g}\right)(-1) = \frac{f(-1)}{g(-1)} = \frac{49}{8} \) So the answers are: (a) \( (f+g)(-1) = 57 \) (b) \( (f-g)(-1) = 41 \) (c) \( (fg)(-1) = 392 \) (d) \( \left(\frac{f}{g}\right)(-1) = \frac{49}{8} \)