Question
upstudy study bank question image url

1. (25, C2) Tentukan himpunan penyelesaian dari pertaksamaan berikut dan tuliskan solusinya dalam notasi selang: \( \begin{array}{ll}\text { a. }-7<3 x-\frac{1}{2} \leq 10 ; & \text { b. }\left|\frac{2 x-3}{5}-\frac{x}{3}\right|>1 \\ \text { c. } \frac{2 x-5}{x-4} \leq 1\end{array} \)

Ask by Rogers Cummings. in Indonesia
Dec 07,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

a. \( -\frac{13}{6} < x \leq \frac{7}{2} \) b. \( x \in (-\infty, -6) \cup (24, +\infty) \) c. \( 1 \leq x < 4 \)

Solution

Solve the equation \( -7<3x-\frac{1}{2} \leq 10 \). Solve the system of inequalities by following steps: - step0: Solve for \(x\): \(\left\{ \begin{array}{l}-7<3x-\frac{1}{2}\\3x-\frac{1}{2}\leq 10\end{array}\right.\) - step1: Solve the inequality: \(\left\{ \begin{array}{l}x>-\frac{13}{6}\\x\leq \frac{7}{2}\end{array}\right.\) - step2: Find the intersection: \(-\frac{13}{6}1 \). Solve the inequality by following steps: - step0: Solve for \(x\): \(\left|\frac{2x-3}{5}-\frac{x}{3}\right|>1\) - step1: Calculate the absolute value: \(\frac{1}{15}\left|x-9\right|>1\) - step2: Rewrite the expression: \(\frac{\left|x-9\right|}{15}>1\) - step3: Multiply both sides: \(\left|x-9\right|>15\) - step4: Separate into possible cases: \(\begin{align}&x-9>15\\&x-9<-15\end{align}\) - step5: Solve the inequality: \(\begin{align}&x>24\\&x<-6\end{align}\) - step6: Find the union: \(x \in \left(-\infty,-6\right)\cup \left(24,+\infty\right)\) Solve the equation \( \frac{2x-5}{x-4} \leq 1 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{2x-5}{x-4}\leq 1\) - step1: Find the domain: \(\frac{2x-5}{x-4}\leq 1,x\neq 4\) - step2: Move the expression to the left side: \(\frac{2x-5}{x-4}-1\leq 0\) - step3: Subtract the terms: \(\frac{x-1}{x-4}\leq 0\) - step4: Set the numerator and denominator of \(\frac{x-1}{x-4}\) equal to 0\(:\) \(\begin{align}&x-1=0\\&x-4=0\end{align}\) - step5: Calculate: \(\begin{align}&x=1\\&x=4\end{align}\) - step6: Determine the test intervals: \(\begin{align}&x<1\\&14\end{align}\) - step7: Choose a value: \(\begin{align}&x_{1}=0\\&x_{2}=3\\&x_{3}=5\end{align}\) - step8: Test the chosen value: \(\begin{align}&x<1\textrm{ }\textrm{is not a solution}\\&14\textrm{ }\textrm{is not a solution}\end{align}\) - step9: Include the critical value: \(\begin{align}&1\leq x<4\textrm{ }\textrm{is the solution}\end{align}\) - step10: The final solution is \(1\leq x<4:\) \(1\leq x<4\) - step11: Check if the solution is in the defined range: \(1\leq x<4,x\neq 4\) - step12: Find the intersection: \(1\leq x<4\) Penyelesaian dari pertaksamaan-pertaksamaan tersebut adalah sebagai berikut: a. \( -\frac{13}{6} < x \leq \frac{7}{2} \) b. \( x \in (-\infty, -6) \cup (24, +\infty) \) c. \( 1 \leq x < 4 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Mari kita selesaikan pertaksamaan satu per satu. **a.** Pertaksamaan yang diberikan adalah \(-7 < 3x - \frac{1}{2} \leq 10\). 1. Untuk bagian kiri \(-7 < 3x - \frac{1}{2}\): \[ -7 + \frac{1}{2} < 3x \Rightarrow -\frac{14}{2} + \frac{1}{2} < 3x \Rightarrow -\frac{13}{2} < 3x \Rightarrow x > -\frac{13}{6} \] 2. Untuk bagian kanan \(3x - \frac{1}{2} \leq 10\): \[ 3x \leq 10 + \frac{1}{2} \Rightarrow 3x \leq \frac{20}{2} + \frac{1}{2} \Rightarrow 3x \leq \frac{21}{2} \Rightarrow x \leq \frac{21}{6} \] Sehingga, himpunan penyelesaian untuk a adalah: \[ x \in \left( -\frac{13}{6}, \frac{21}{6} \right] \] **b.** Pertaksamaan yang diberikan adalah \(\left|\frac{2x - 3}{5} - \frac{x}{3}\right| > 1\). 1. Pertama, kita ubah menjadi dua pertaksamaan: \[ \frac{2x - 3}{5} - \frac{x}{3} > 1 \quad \text{atau} \quad \frac{2x - 3}{5} - \frac{x}{3} < -1 \] 2. Untuk \(\frac{2x - 3}{5} - \frac{x}{3} > 1\): \[ \frac{2x - 3}{5} > 1 + \frac{x}{3} \quad \Rightarrow \quad \text{Mencari penyelesaian bagi x} \] Mengalikan seluruh persamaan x dengan kelipatan persekutuan 15, kita dapat melihat bahwa: \[ 6(2x - 3) > 15 + 5x \Rightarrow 12x - 18 > 15 + 5x \Rightarrow 7x > 33 \Rightarrow x > \frac{33}{7} \] 3. Untuk \(\frac{2x - 3}{5} - \frac{x}{3} < -1\): \[ \frac{2x - 3}{5} < -1 + \frac{x}{3} \quad \Rightarrow \quad \text{Mencari penyelesaian bagi x yang sama seperti di atas} \] Mengalikan lagi, kita peroleh: \[ 6(2x - 3) < -15 + 5x \Rightarrow 12x - 18 < -15 + 5x \Rightarrow 7x < 3 \Rightarrow x < \frac{3}{7} \] Jadi, himpunan penyelesaian untuk b adalah: \[ x \in \left( -\infty, \frac{3}{7} \right) \cup \left( \frac{33}{7}, \infty \right) \] **c.** Pertaksamaan yang diberikan adalah \(\frac{2x - 5}{x - 4} \leq 1\). 1. Langkah pertama: \[ \frac{2x - 5}{x - 4} - 1 \leq 0 \Rightarrow \frac{2x - 5 - (x - 4)}{x - 4} \leq 0 \Rightarrow \frac{x - 1}{x - 4} \leq 0 \] 2. Untuk menyelesaikan \(\frac{x - 1}{x - 4} \leq 0\), kita perlu menentukan titik potong: - Titik potong numerik \(x - 1 = 0 \Rightarrow x = 1\) - Titik potong penyebut \(x - 4 = 0 \Rightarrow x = 4\) 3. Uji interval: - Untuk interval \((- \infty, 1)\): positif - Untuk interval \((1, 4)\): negatif - Untuk interval \((4, +\infty)\):

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy