Question
upstudy study bank question image url

El valor positivo que debe tomar \( x \) para que la distancia entre los puntos \( A(-1,2) \) y \( B(x, 10) \) sea igual a 10 es: \( \begin{array}{llll}\text { a) } 2 & \text { b) } 10 & \text { c) } 5 & \text { d) } 2\end{array} \)

Ask by Floyd Peters. in Mexico
Jan 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El valor positivo que debe tomar \( x \) es **5**.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para encontrar el valor de \( x \) que hace que la distancia entre los puntos \( A(-1,2) \) y \( B(x, 10) \) sea igual a 10, usamos la fórmula de distancia entre dos puntos en el plano: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Sustituyendo los puntos \( A \) y \( B \): \[ 10 = \sqrt{(x - (-1))^2 + (10 - 2)^2} \] Simplificando: \[ 10 = \sqrt{(x + 1)^2 + 8^2} \] \[ 10 = \sqrt{(x + 1)^2 + 64} \] Elevamos al cuadrado ambos lados: \[ 100 = (x + 1)^2 + 64 \] Restando 64 de ambos lados: \[ 36 = (x + 1)^2 \] Tomando la raíz cuadrada: \[ x + 1 = 6 \quad \text{o} \quad x + 1 = -6 \] Resolviendo ambas ecuaciones: 1. \( x + 1 = 6 \Rightarrow x = 5 \) 2. \( x + 1 = -6 \Rightarrow x = -7 \) (no se considera ya que buscamos un valor positivo) Por lo tanto, el valor positivo que debe tomar \( x \) es \( 5 \). La respuesta correcta es: **c) 5**.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy