Question
upstudy study bank question image url

Evaluate the following integral \( \iint(4 x+y)^{3} d A, R(0,2),(0,3) \)

Ask by Ellis Estrada. in Cameroon
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The value of the integral is 6402.

Solution

To evaluate the double integral \[ \iint_R (4x + y)^3 \, dA \] over the region \( R \) defined by \( 0 \leq x \leq 2 \) and \( 0 \leq y \leq 3 \), follow these steps: ### Step 1: Set Up the Integral The region \( R \) is a rectangle with \( x \) ranging from 0 to 2 and \( y \) ranging from 0 to 3. Thus, the double integral can be expressed as: \[ \int_{0}^{2} \int_{0}^{3} (4x + y)^3 \, dy \, dx \] ### Step 2: Integrate with Respect to \( y \) First, integrate \( (4x + y)^3 \) with respect to \( y \): Let \( u = 4x + y \), hence \( du = dy \). The limits for \( u \) when \( y = 0 \) and \( y = 3 \) are \( u = 4x \) and \( u = 4x + 3 \), respectively. \[ \int_{0}^{3} (4x + y)^3 \, dy = \int_{4x}^{4x + 3} u^3 \, du = \left[ \frac{u^4}{4} \right]_{4x}^{4x + 3} = \frac{(4x + 3)^4 - (4x)^4}{4} \] ### Step 3: Integrate with Respect to \( x \) Now, integrate the result with respect to \( x \): \[ \int_{0}^{2} \frac{(4x + 3)^4 - (4x)^4}{4} \, dx = \frac{1}{4} \left( \int_{0}^{2} (4x + 3)^4 \, dx - \int_{0}^{2} (4x)^4 \, dx \right) \] Compute each integral separately: 1. **First Integral:** \[ \int_{0}^{2} (4x + 3)^4 \, dx \] Let \( u = 4x + 3 \), \( du = 4 \, dx \), so \( dx = \frac{du}{4} \). The limits change to \( u = 3 \) when \( x = 0 \) and \( u = 11 \) when \( x = 2 \). \[ \int_{3}^{11} u^4 \cdot \frac{du}{4} = \frac{1}{4} \left[ \frac{u^5}{5} \right]_3^{11} = \frac{11^5 - 3^5}{20} \] 2. **Second Integral:** \[ \int_{0}^{2} (4x)^4 \, dx = 4^4 \int_{0}^{2} x^4 \, dx = 256 \left[ \frac{x^5}{5} \right]_0^{2} = 256 \cdot \frac{32}{5} = \frac{8192}{5} \] ### Step 4: Combine the Results \[ \frac{1}{4} \left( \frac{11^5 - 3^5}{20} - \frac{8192}{5} \right) = \frac{11^5 - 3^5 - 32768}{20} \] Calculate the numerical values: \[ 11^5 = 161051, \quad 3^5 = 243 \] \[ 161051 - 243 - 32768 = 128040 \] \[ \frac{128040}{20} = 6402 \] ### Final Answer \[ \boxed{6402} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the integral \(\iint_R (4x + y)^3 \, dA\) over the region \(R\) defined by the bounds \(x \in [0, 2]\) and \(y \in [0, 3]\), we first set up the double integral: \[ \int_0^2 \int_0^3 (4x + y)^3 \, dy \, dx. \] Next, we need to integrate with respect to \(y\) first: 1. **Inner Integral**: Compute \(\int_0^3 (4x + y)^3 \, dy\). Let \(u = 4x + y\), then \(du = dy\), and when \(y = 0\), \(u = 4x\) and when \(y = 3\), \(u = 4x + 3\). The limits change accordingly. The integral transforms to: \[ \int_{4x}^{4x+3} u^3 \, du. \] Now, compute it: \[ \int u^3 \, du = \frac{u^4}{4}. \] Evaluating the definite integral from \(4x\) to \(4x + 3\): \[ \left[\frac{(4x + 3)^4}{4} - \frac{(4x)^4}{4}\right]. \] Now expand \((4x + 3)^4\): \[ (4x + 3)^4 = 256x^4 + 768x^3 + 864x^2 + 432x + 81. \] Thus, \[ \frac{(4x + 3)^4}{4} - \frac{(4x)^4}{4} = \frac{1}{4}(256x^4 + 768x^3 + 864x^2 + 432x + 81 - 256x^4) = \frac{1}{4}(768x^3 + 864x^2 + 432x + 81). \] This simplifies to: \[ 192x^3 + 216x^2 + 108x + \frac{81}{4}. \] 2. **Outer Integral**: Integrate the result with respect to \(x\) from 0 to 2: \[ \int_0^2 \left(192x^3 + 216x^2 + 108x + \frac{81}{4}\right) \, dx. \] Now compute this integral term-by-term: - \(\int_0^2 192x^3 \, dx = 192 \cdot \frac{x^4}{4} \Big|_0^2 = 192 \cdot \frac{16}{4} = 768\), - \(\int_0^2 216x^2 \, dx = 216 \cdot \frac{x^3}{3} \Big|_0^2 = 216 \cdot \frac{8}{3} = 576\), - \(\int_0^2 108x \, dx = 108 \cdot \frac{x^2}{2} \Big|_0^2 = 108 \cdot 2 = 216\), - \(\int_0^2 \frac{81}{4} \, dx = \frac{81}{4} \cdot x \Big|_0^2 = \frac{81}{4} \cdot 2 = \frac{162}{4} = 40.5\). Now add all these results together: \[ 768 + 576 + 216 + 40.5 = 1600.5. \] Thus, the value of the double integral is: \[ \boxed{1600.5}. \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy