Evaluate the following integral \( \iint(4 x+y)^{3} d A, R(0,2),(0,3) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To evaluate the integral \(\iint_R (4x + y)^3 \, dA\) over the region \(R\) defined by the bounds \(x \in [0, 2]\) and \(y \in [0, 3]\), we first set up the double integral: \[ \int_0^2 \int_0^3 (4x + y)^3 \, dy \, dx. \] Next, we need to integrate with respect to \(y\) first: 1. **Inner Integral**: Compute \(\int_0^3 (4x + y)^3 \, dy\). Let \(u = 4x + y\), then \(du = dy\), and when \(y = 0\), \(u = 4x\) and when \(y = 3\), \(u = 4x + 3\). The limits change accordingly. The integral transforms to: \[ \int_{4x}^{4x+3} u^3 \, du. \] Now, compute it: \[ \int u^3 \, du = \frac{u^4}{4}. \] Evaluating the definite integral from \(4x\) to \(4x + 3\): \[ \left[\frac{(4x + 3)^4}{4} - \frac{(4x)^4}{4}\right]. \] Now expand \((4x + 3)^4\): \[ (4x + 3)^4 = 256x^4 + 768x^3 + 864x^2 + 432x + 81. \] Thus, \[ \frac{(4x + 3)^4}{4} - \frac{(4x)^4}{4} = \frac{1}{4}(256x^4 + 768x^3 + 864x^2 + 432x + 81 - 256x^4) = \frac{1}{4}(768x^3 + 864x^2 + 432x + 81). \] This simplifies to: \[ 192x^3 + 216x^2 + 108x + \frac{81}{4}. \] 2. **Outer Integral**: Integrate the result with respect to \(x\) from 0 to 2: \[ \int_0^2 \left(192x^3 + 216x^2 + 108x + \frac{81}{4}\right) \, dx. \] Now compute this integral term-by-term: - \(\int_0^2 192x^3 \, dx = 192 \cdot \frac{x^4}{4} \Big|_0^2 = 192 \cdot \frac{16}{4} = 768\), - \(\int_0^2 216x^2 \, dx = 216 \cdot \frac{x^3}{3} \Big|_0^2 = 216 \cdot \frac{8}{3} = 576\), - \(\int_0^2 108x \, dx = 108 \cdot \frac{x^2}{2} \Big|_0^2 = 108 \cdot 2 = 216\), - \(\int_0^2 \frac{81}{4} \, dx = \frac{81}{4} \cdot x \Big|_0^2 = \frac{81}{4} \cdot 2 = \frac{162}{4} = 40.5\). Now add all these results together: \[ 768 + 576 + 216 + 40.5 = 1600.5. \] Thus, the value of the double integral is: \[ \boxed{1600.5}. \]