Question
upstudy study bank question image url

f) \( \lim _{y \rightarrow-1} \frac{y^{2}-1}{y+2} \)

Ask by Ross Kelley. in Colombia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El límite es 0.

Solution

Para resolver el límite: \[ \lim _{y \rightarrow-1} \frac{y^{2}-1}{y+2} \] Primero, evaluamos directamente sustituyendo \( y = -1 \): 1. **Sustitución en el numerador:** \[ y^{2} - 1 = (-1)^{2} - 1 = 1 - 1 = 0 \] 2. **Sustitución en el denominador:** \[ y + 2 = -1 + 2 = 1 \] Entonces, el límite se reduce a: \[ \frac{0}{1} = 0 \] Por lo tanto, el límite es: \[ \boxed{0} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the limit \( \lim _{y \rightarrow-1} \frac{y^{2}-1}{y+2} \), we can begin by substituting \( y = -1 \) directly into the expression. First, we calculate the numerator: \[ y^2 - 1 = (-1)^2 - 1 = 1 - 1 = 0 \] Next, we calculate the denominator: \[ y + 2 = -1 + 2 = 1 \] So, we have: \[ \frac{y^2 - 1}{y + 2} = \frac{0}{1} = 0 \] Therefore, \[ \lim _{y \rightarrow-1} \frac{y^{2}-1}{y+2} = 0 \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy