Question
upstudy study bank question image url

2. Find the coefficient of \( b \) in expansion of \( (3+b)^{4} \)

Ask by Burton Ramos. in Colombia
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El coeficiente de \( b \) en la expansión de \( (3 + b)^{4} \) es **108**.

Solution

Para encontrar el coeficiente de \( b \) en la expansión de \( (3 + b)^{4} \), utilizamos el **Teorema del Binomio**: \[ (3 + b)^{4} = \sum_{k=0}^{4} \binom{4}{k} \cdot 3^{4-k} \cdot b^{k} \] Queremos el término que contiene \( b \), es decir, cuando \( k = 1 \): \[ \binom{4}{1} \cdot 3^{3} \cdot b^{1} = 4 \cdot 27 \cdot b = 108b \] Por lo tanto, el **coeficiente de \( b \)** en la expansión es **108**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the coefficient of \( b \) in the expansion of \( (3+b)^{4} \), we can use the binomial theorem, which states that: \[ (x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] In our case, \( x = 3 \), \( y = b \), and \( n = 4 \). We are looking for the term where \( k = 1 \), since this term will contain \( b \). The general term in the expansion is given by: \[ \binom{4}{k} (3)^{4-k} (b)^k \] For \( k = 1 \): \[ \text{Term} = \binom{4}{1} (3)^{4-1} (b)^1 = 4 \cdot 3^3 \cdot b \] Calculating \( 3^3 \): \[ 3^3 = 27 \] Now substituting it back: \[ \text{Term} = 4 \cdot 27 \cdot b = 108b \] So, the coefficient of \( b \) in the expansion of \( (3+b)^{4} \) is \( \boxed{108} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy