Question
upstudy study bank question image url

2.1.29*. Bitta nuqtadan \( \vec{a}(-12 ; 16), \vec{b}(12 ; 5) \) vektorlar o'tkazilgan. \( \vec{a} \) bilan \( \vec{b} \) vektorlar orasidagi burchakni teng ikkiga bo'ladigan va shu nuqtadan chiqqan birlik vektorning koordinatalari topilsin. 2.1.30*. Bitta nuqtadan \( \vec{a}(-3 ; 0 ; 4), \vec{b}(5 ;-2 ;-14) \quad \) vektorlar o'tkazilgan. \( \vec{a}, \vec{b} \) vektorlar orasidagi burchakni teng ikkiga bo'ladigan birlik vektor topilsin.

Ask by Harrington Collins. in Russia
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Birlik vektorlari: 1. **Masala 2.1.29**: - Koordinatalari: \( (0, 1) \) 2. **Masala 2.1.30**: - Koordinatalari: \( \left(\frac{1}{3\sqrt{3}}, \frac{-1}{3\sqrt{3}}, \frac{-5}{3\sqrt{3}}\right) \)

Solution

Keling, berilgan masalalarni bosqichma-bosqich yechamiz. ### Masala 2.1.29 Berilgan vektorlar: - \( \vec{a}(-12, 16) \) - \( \vec{b}(12, 5) \) 1. **Vektorlarning uzunligini hisoblaymiz:** \[ |\vec{a}| = \sqrt{(-12)^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20 \] \[ |\vec{b}| = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \] 2. **Vektorlarning kosinus burchagini hisoblaymiz:** \[ \cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] \[ \vec{a} \cdot \vec{b} = (-12) \cdot 12 + 16 \cdot 5 = -144 + 80 = -64 \] \[ \cos(\theta) = \frac{-64}{20 \cdot 13} = \frac{-64}{260} = -\frac{32}{130} = -\frac{16}{65} \] 3. **Burchakni topamiz:** \[ \theta = \cos^{-1}\left(-\frac{16}{65}\right) \] 4. **Burchakni teng ikkiga bo'ladigan burchak:** \[ \frac{\theta}{2} \] 5. **Birlik vektorning koordinatalarini topamiz:** Burchakni teng ikkiga bo'lish uchun, \( \vec{a} \) va \( \vec{b} \) vektorlarining birikmasini hisoblaymiz: \[ \vec{u} = \vec{a} + \vec{b} = (-12 + 12, 16 + 5) = (0, 21) \] Birlik vektor: \[ \vec{u}_{\text{birlik}} = \frac{\vec{u}}{|\vec{u}|} \] \[ |\vec{u}| = \sqrt{0^2 + 21^2} = 21 \] \[ \vec{u}_{\text{birlik}} = \left(0, \frac{21}{21}\right) = (0, 1) \] ### Masala 2.1.30 Berilgan vektorlar: - \( \vec{a}(-3, 0, 4) \) - \( \vec{b}(5, -2, -14) \) 1. **Vektorlarning uzunligini hisoblaymiz:** \[ |\vec{a}| = \sqrt{(-3)^2 + 0^2 + 4^2} = \sqrt{9 + 0 + 16} = \sqrt{25} = 5 \] \[ |\vec{b}| = \sqrt{5^2 + (-2)^2 + (-14)^2} = \sqrt{25 + 4 + 196} = \sqrt{225} = 15 \] 2. **Vektorlarning skalar ko'paytmasini hisoblaymiz:** \[ \vec{a} \cdot \vec{b} = (-3) \cdot 5 + 0 \cdot (-2) + 4 \cdot (-14) = -15 + 0 - 56 = -71 \] 3. **Kosinus burchagini hisoblaymiz:** \[ \cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-71}{5 \cdot 15} = \frac{-71}{75} \] 4. **Burchakni topamiz:** \[ \theta = \cos^{-1}\left(-\frac{71}{75}\right) \] 5. **Burchakni teng ikkiga bo'ladigan burchak:** \[ \frac{\theta}{2} \] 6. **Birlik vektorning koordinatalarini topamiz:** Vektorlar yig'indisi: \[ \vec{u} = \vec{a} + \vec{b} = (-3 + 5, 0 - 2, 4 - 14) = (2, -2, -10) \] Birlik vektor: \[ |\vec{u}| = \sqrt{2^2 + (-2)^2 + (-10)^2} = \sqrt{4 + 4 + 100} = \sqrt{108} = 6\sqrt{3} \] \[ \vec{u}_{\text{birlik}} = \left(\frac{2}{6\sqrt{3}}, \frac{-2}{6\sqrt{3}}, \frac{-10}{6\sqrt{3}}\right) = \left(\frac{1}{3\sqrt{3}}, \frac{-1}{3\sqrt{3}}, \frac{-5}{3\sqrt{3}}\right) \] Natijalar: - 2.1.29 masalasi uchun birlik vektor: \( (0, 1) \) - 2.1.30 masalasi uchun birlik vektor: \( \left(\frac{1}{3\sqrt{3}}, \frac{-1}{3\sqrt{3}}, \frac{-5}{3\sqrt{3}}\right) \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Birlik vektorlarning koordinatalarini topish uchun, avvalo, \( \vec{a} \) va \( \vec{b} \) vektorlarining burchakini hisoblashimiz zarur. Burchakni teng ikkiga bo'lish uchun ularning yig'indisi bo'lgan vektorni xohlagan nuqtaga normallashtirish kifoya. Misol uchun, 2.1.29 masalasida, \( \vec{v} = \vec{a} + \vec{b} = (-12 + 12, 16 + 5) = (0, 21) \). Ushbu vektorning uzunligini hisoblasingiz, uning koordinatalarini 1 ga teng bo'lishi uchun normallashtirganda, \( \vec{v}_n = \left(0, \frac{21}{21}\right) = (0, 1) \) shaklida bo'ladi. Birlik vektorlarni izlar ekanmiz, 2.1.30 masalasida ham xuddi shu usuldan foydalanish mumkin. \( \vec{a} \) va \( \vec{b} \) ning yig'indisini \( \vec{v} = (-3 + 5, 0 - 2, 4 - 14) = (2, -2, -10) \) tarzida ifodalaymiz. Keyin, normallashtirish jarayonida \( \left(2^2 + (-2)^2 + (-10)^2\right)^{1/2} \) formula bilan vektor uzunligini topamiz va olingan vektor ham ushbu punktda chiqishi kerak. Бугунги кунда математикада нафақат ортиқча теоремаларни билишимиз керак, балки практик таҳлил методлари ҳам жуда муҳим.

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy