f \( a-\frac{1}{a}=m \), show that \( a^{4}+\frac{1}{a^{4}}=m^{4}+4 m^{2}+2 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To show that \( a^{4} + \frac{1}{a^{4}} = m^{4} + 4m^{2} + 2 \) given \( f(a - \frac{1}{a}) = m \), let's start by using the relationship between \( a \) and \( m \). From \( a - \frac{1}{a} = m \), we can manipulate this to find \( a^2 + \frac{1}{a^2} \). 1. Square both sides: \[ \left(a - \frac{1}{a}\right)^2 = m^2. \] This expands to: \[ a^2 - 2 + \frac{1}{a^2} = m^2. \] Rearranging gives: \[ a^2 + \frac{1}{a^2} = m^2 + 2. \] 2. Now, square \( a^2 + \frac{1}{a^2} \) to find \( a^4 + \frac{1}{a^4} \): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = a^4 + 2 + \frac{1}{a^4}. \] Thus, \[ a^4 + \frac{1}{a^4} = \left(a^2 + \frac{1}{a^2}\right)^2 - 2. \] 3. Substitute \( a^2 + \frac{1}{a^2} = m^2 + 2 \) into the equation: \[ a^4 + \frac{1}{a^4} = (m^2 + 2)^2 - 2. \] Expanding gives: \[ = m^4 + 4m^2 + 4 - 2 = m^4 + 4m^2 + 2. \] Thus, we have shown that \[ a^{4}+\frac{1}{a^{4}}=m^{4}+4m^{2}+2. \]