Question
16. \( \left(\frac{20}{100}+\frac{25}{100}\right)+\frac{25}{100} \)
Ask by Carroll Cross. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The value of the expression is \( \frac{70}{100} \) or 70%.
Solution
To solve the expression:
\[
\left(\frac{20}{100} + \frac{25}{100}\right) + \frac{25}{100}
\]
**Step 1:** Add the fractions inside the first parentheses.
\[
\frac{20}{100} + \frac{25}{100} = \frac{20 + 25}{100} = \frac{45}{100}
\]
**Step 2:** Add the result to the remaining fraction.
\[
\frac{45}{100} + \frac{25}{100} = \frac{45 + 25}{100} = \frac{70}{100}
\]
**Step 3:** Simplify the fraction, if necessary.
\[
\frac{70}{100} = 0.70 \quad \text{or} \quad 70\%
\]
**Final Answer:** The value of the expression is **\(\frac{70}{100}\)**, which is equal to **70%**.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To simplify \( \left(\frac{20}{100}+\frac{25}{100}\right)+\frac{25}{100} \), first calculate the sum inside the parentheses: \(\frac{20}{100} + \frac{25}{100} = \frac{20 + 25}{100} = \frac{45}{100}\). Now, add the last fraction: \(\frac{45}{100} + \frac{25}{100} = \frac{45 + 25}{100} = \frac{70}{100}\). So the final result is \( \frac{70}{100} \), which simplifies to \( 0.7 \) or \( 70\% \).