Exercice 12: Calculer: \( \begin{array}{lll}\mathbf{A}=3+\mathbf{4}^{2} \quad B=3 \times 4^{2} & C=5^{3}-4^{3} & D=5^{3}-\left(2^{4}+7,5\right) \\ E=2 \times(-4)^{2}+3 \times(-1)^{3} \quad F=-7^{2}-3 \times(-2)^{3} & G=0,2 \times 10^{4}-\left(-2^{-2}\right)^{2} \times 32-15^{0} \\ H=(-3)^{2}-5 \times 2^{2} & I=-3^{2}+4 \times 2^{3} & J=\frac{-1}{3} \times\left(\frac{2}{3}\right)^{2}-\frac{7^{2}}{3^{4}} \\ K=2^{3} \times(-9)+3^{3}-\left(5^{2}+2^{-1}\right) & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Pour résoudre le problème, commençons par calculating chaque expression une à la fois. - **A**: \( A = 3 + 4^2 = 3 + 16 = 19 \) - **B**: \( B = 3 \times 4^2 = 3 \times 16 = 48 \) - **C**: \( C = 5^3 - 4^3 = 125 - 64 = 61 \) - **D**: \( D = 5^3 - (2^4 + 7.5) = 125 - (16 + 7.5) = 125 - 23.5 = 101.5 \) - **E**: \( E = 2 \times (-4)^2 + 3 \times (-1)^3 = 2 \times 16 - 3 = 32 - 3 = 29 \) - **F**: \( F = -7^2 - 3 \times (-2)^3 = -49 + 3 \times 8 = -49 + 24 = -25 \) - **G**: \( G = 0.2 \times 10^4 - (-2^{-2})^2 \times 32 - 15^0 = 2000 - (0.25 \times 32) - 1 = 2000 - 8 - 1 = 1991 \) - **H**: \( H = (-3)^2 - 5 \times 2^2 = 9 - 20 = -11 \) - **I**: \( I = -3^2 + 4 \times 2^3 = -9 + 32 = 23 \) - **J**: \( J = \frac{-1}{3} \times \left(\frac{2}{3}\right)^2 - \frac{7^2}{3^4} = \frac{-1}{3} \times \frac{4}{9} - \frac{49}{81} = \frac{-4}{27} - \frac{49}{81} \) Pour additionner, transformons \(-\frac{4}{27}\) en un dénominateur de 81: \(-\frac{12}{81}\). Donc, \( J = -\frac{12}{81} - \frac{49}{81} = -\frac{61}{81} \) - **K**: \( K = 2^3 \times (-9) + 3^3 - (5^2 + 2^{-1}) = -72 + 27 - (25 + 0.5) = -72 + 27 - 25.5 = -70.5 \) Voici les résultats de chaque expression : - **A**: 19 - **B**: 48 - **C**: 61 - **D**: 101.5 - **E**: 29 - **F**: -25 - **G**: 1991 - **H**: -11 - **I**: 23 - **J**: -\(\frac{61}{81}\) - **K**: -70.5