Question
upstudy study bank question image url

Adding fractions (like denominators) Grade 5 Fractions Worksheet Find the sum. 1. \( \frac{3}{4}+\frac{3}{4}= \) \( \qquad \) 2. \( \frac{5}{7}+\frac{6}{7}= \) \( \qquad \) 3. \( \frac{16}{25}+\frac{12}{25}= \) \( \qquad \) 4. \( \frac{23}{100}+\frac{54}{100}= \) \( \qquad \) 5. \( \frac{6}{9}+\frac{1}{9}= \) \( \qquad \) 6. \( \frac{8}{10}+\frac{4}{10}= \) \( \qquad \) 7. \( \frac{4}{6}+\frac{4}{6}= \) \( \qquad \) 8. \( \frac{18}{50}+\frac{42}{50}= \) \( \qquad \) 9. \( \frac{13}{20}+\frac{11}{20}= \) \( \qquad \) 10. \( \frac{7}{11}+\frac{7}{11}= \) \( \qquad \) 11. \( \frac{15}{25}+\frac{7}{25}= \) \( \qquad \) 12. \( \frac{4}{7}+\frac{3}{7}= \) \( \qquad \) 13. \( \frac{1}{3}+\frac{1}{3}= \) \( \qquad \) 14. \( \frac{4}{8}+\frac{3}{8}= \) \( \qquad \) 15. \( \frac{2}{5}+\frac{2}{5}= \) \( \qquad \) 16. \( \frac{8}{16}+\frac{10}{16}= \) \( \qquad \) 17. \( \frac{3}{12}+\frac{6}{12}= \) \( \qquad \) 18. \( \frac{1}{2}+\frac{1}{2}= \) \( \qquad \) 9. \( \frac{3}{13}+\frac{7}{13}= \) \( \qquad \) 20. \( \frac{8}{15}+\frac{11}{15}= \) 21. \( \frac{3}{14}+\frac{4}{14}= \)

Ask by Cook Peters. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the answers to the Grade 5 Fractions Worksheet on adding fractions with like denominators: 1. \( \frac{3}{4} + \frac{3}{4} = 1 \frac{1}{2} \) 2. \( \frac{5}{7} + \frac{6}{7} = 1 \frac{4}{7} \) 3. \( \frac{16}{25} + \frac{12}{25} = 1 \frac{3}{25} \) 4. \( \frac{23}{100} + \frac{54}{100} = \frac{77}{100} \) 5. \( \frac{6}{9} + \frac{1}{9} = \frac{7}{9} \) 6. \( \frac{8}{10} + \frac{4}{10} = 1 \frac{1}{5} \) 7. \( \frac{4}{6} + \frac{4}{6} = 1 \frac{1}{3} \) 8. \( \frac{18}{50} + \frac{42}{50} = 1 \frac{1}{5} \) 9. \( \frac{13}{20} + \frac{11}{20} = 1 \frac{1}{5} \) 10. \( \frac{7}{11} + \frac{7}{11} = 1 \frac{3}{11} \) 11. \( \frac{15}{25} + \frac{7}{25} = \frac{22}{25} \) 12. \( \frac{4}{7} + \frac{3}{7} = 1 \) 13. \( \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \) 14. \( \frac{4}{8} + \frac{3}{8} = \frac{7}{8} \) 15. \( \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \) 16. \( \frac{8}{16} + \frac{10}{16} = 1 \frac{1}{8} \) 17. \( \frac{3}{12} + \frac{6}{12} = \frac{3}{4} \) 18. \( \frac{1}{2} + \frac{1}{2} = 1 \) 19. \( \frac{3}{13} + \frac{7}{13} = \frac{10}{13} \) 20. \( \frac{8}{15} + \frac{11}{15} = 1 \frac{4}{15} \) 21. \( \frac{3}{14} + \frac{4}{14} = \frac{1}{2} \) **Tips for Simplifying Fractions:** - Reduce fractions by dividing both the numerator and denominator by their greatest common divisor. - Convert improper fractions to mixed numbers when the numerator is larger than the denominator. - Always double-check your calculations to ensure accuracy. If you need further assistance or more practice, feel free to ask!

Solution

Sure! Here's the answer key for the Grade 5 Fractions Worksheet on adding fractions with like denominators: --- **Answer Key** 1. \( \frac{3}{4} + \frac{3}{4} = \frac{6}{4} = 1 \frac{2}{4} = 1 \frac{1}{2} \) 2. \( \frac{5}{7} + \frac{6}{7} = \frac{11}{7} = 1 \frac{4}{7} \) 3. \( \frac{16}{25} + \frac{12}{25} = \frac{28}{25} = 1 \frac{3}{25} \) 4. \( \frac{23}{100} + \frac{54}{100} = \frac{77}{100} \) 5. \( \frac{6}{9} + \frac{1}{9} = \frac{7}{9} \) 6. \( \frac{8}{10} + \frac{4}{10} = \frac{12}{10} = 1 \frac{2}{10} = 1 \frac{1}{5} \) 7. \( \frac{4}{6} + \frac{4}{6} = \frac{8}{6} = \frac{4}{3} = 1 \frac{1}{3} \) 8. \( \frac{18}{50} + \frac{42}{50} = \frac{60}{50} = \frac{6}{5} = 1 \frac{1}{5} \) 9. \( \frac{13}{20} + \frac{11}{20} = \frac{24}{20} = \frac{6}{5} = 1 \frac{1}{5} \) 10. \( \frac{7}{11} + \frac{7}{11} = \frac{14}{11} = 1 \frac{3}{11} \) 11. \( \frac{15}{25} + \frac{7}{25} = \frac{22}{25} \) 12. \( \frac{4}{7} + \frac{3}{7} = \frac{7}{7} = 1 \) 13. \( \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \) 14. \( \frac{4}{8} + \frac{3}{8} = \frac{7}{8} \) 15. \( \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \) 16. \( \frac{8}{16} + \frac{10}{16} = \frac{18}{16} = \frac{9}{8} = 1 \frac{1}{8} \) 17. \( \frac{3}{12} + \frac{6}{12} = \frac{9}{12} = \frac{3}{4} \) 18. \( \frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1 \) 19. \( \frac{3}{13} + \frac{7}{13} = \frac{10}{13} \) 20. \( \frac{8}{15} + \frac{11}{15} = \frac{19}{15} = 1 \frac{4}{15} \) 21. \( \frac{3}{14} + \frac{4}{14} = \frac{7}{14} = \frac{1}{2} \) --- **Tips for Simplifying Fractions:** - Always check if the numerator and denominator have a common factor and reduce the fraction to its simplest form if possible. - When the numerator is larger than the denominator, you can convert the improper fraction to a mixed number for easier interpretation. Feel free to reach out if you need further explanations or additional worksheets!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

When adding fractions with like denominators, you simply add the numerators while keeping the denominator the same! For example, in \( \frac{3}{4} + \frac{3}{4} \), you add the numerators \(3 + 3\) to get \(6\), so the answer is \( \frac{6}{4} \), which can be simplified to \(1 \frac{1}{2}\). It's like throwing a party: count how many slices of pizza everyone eats without changing the number of slices in the box! Always be careful not to change the denominator when you are adding these fractions. A common mistake is to add the denominators as well—please don't do that! It’s essential to keep that denominator constant to accurately represent the sum. Just remember, if your friends keep bringing pizzas, it’s just a matter of counting the slices—easy peasy!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy