Adding fractions (like denominators) Grade 5 Fractions Worksheet Find the sum. 1. \( \frac{3}{4}+\frac{3}{4}= \) \( \qquad \) 2. \( \frac{5}{7}+\frac{6}{7}= \) \( \qquad \) 3. \( \frac{16}{25}+\frac{12}{25}= \) \( \qquad \) 4. \( \frac{23}{100}+\frac{54}{100}= \) \( \qquad \) 5. \( \frac{6}{9}+\frac{1}{9}= \) \( \qquad \) 6. \( \frac{8}{10}+\frac{4}{10}= \) \( \qquad \) 7. \( \frac{4}{6}+\frac{4}{6}= \) \( \qquad \) 8. \( \frac{18}{50}+\frac{42}{50}= \) \( \qquad \) 9. \( \frac{13}{20}+\frac{11}{20}= \) \( \qquad \) 10. \( \frac{7}{11}+\frac{7}{11}= \) \( \qquad \) 11. \( \frac{15}{25}+\frac{7}{25}= \) \( \qquad \) 12. \( \frac{4}{7}+\frac{3}{7}= \) \( \qquad \) 13. \( \frac{1}{3}+\frac{1}{3}= \) \( \qquad \) 14. \( \frac{4}{8}+\frac{3}{8}= \) \( \qquad \) 15. \( \frac{2}{5}+\frac{2}{5}= \) \( \qquad \) 16. \( \frac{8}{16}+\frac{10}{16}= \) \( \qquad \) 17. \( \frac{3}{12}+\frac{6}{12}= \) \( \qquad \) 18. \( \frac{1}{2}+\frac{1}{2}= \) \( \qquad \) 9. \( \frac{3}{13}+\frac{7}{13}= \) \( \qquad \) 20. \( \frac{8}{15}+\frac{11}{15}= \) 21. \( \frac{3}{14}+\frac{4}{14}= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When adding fractions with like denominators, you simply add the numerators while keeping the denominator the same! For example, in \( \frac{3}{4} + \frac{3}{4} \), you add the numerators \(3 + 3\) to get \(6\), so the answer is \( \frac{6}{4} \), which can be simplified to \(1 \frac{1}{2}\). It's like throwing a party: count how many slices of pizza everyone eats without changing the number of slices in the box! Always be careful not to change the denominator when you are adding these fractions. A common mistake is to add the denominators as well—please don't do that! It’s essential to keep that denominator constant to accurately represent the sum. Just remember, if your friends keep bringing pizzas, it’s just a matter of counting the slices—easy peasy!