\( \leftarrow \) For the vectors \( \mathbf{u}=\langle-8,0,5\rangle \) and \( \mathbf{v}=\langle 1,5,-5\rangle \), calculate \( \operatorname{proj}_{\mathbf{v}} \mathbf{u} \) and \( \operatorname{scal}_{\mathbf{v}} \mathbf{u} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To calculate the projection \( \operatorname{proj}_{\mathbf{v}} \mathbf{u} \) of vector \( \mathbf{u} \) onto vector \( \mathbf{v} \), we use the formula: \[ \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \] First, we calculate the dot products: \[ \mathbf{u} \cdot \mathbf{v} = (-8)(1) + (0)(5) + (5)(-5) = -8 + 0 - 25 = -33 \] \[ \mathbf{v} \cdot \mathbf{v} = (1)(1) + (5)(5) + (-5)(-5) = 1 + 25 + 25 = 51 \] Now, we can plug these into the projection formula: \[ \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{-33}{51} \mathbf{v} \] Calculating \( \frac{-33}{51} \), we simplify it to \( \frac{-11}{17} \): \[ \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{-11}{17} \langle 1, 5, -5 \rangle = \left\langle \frac{-11}{17}, \frac{-55}{17}, \frac{55}{17} \right\rangle \] Next, for the scalar projection \( \operatorname{scal}_{\mathbf{v}} \mathbf{u} \), we use the following formula: \[ \operatorname{scal}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \] First, we need the magnitude of \( \mathbf{v} \): \[ |\mathbf{v}| = \sqrt{1^2 + 5^2 + (-5)^2} = \sqrt{1 + 25 + 25} = \sqrt{51} \] Now we can find the scalar projection: \[ \operatorname{scal}_{\mathbf{v}} \mathbf{u} = \frac{-33}{\sqrt{51}} \] Thus, we have: \[ \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left\langle \frac{-11}{17}, \frac{-55}{17}, \frac{55}{17} \right\rangle \] \[ \operatorname{scal}_{\mathbf{v}} \mathbf{u} = \frac{-33}{\sqrt{51}} \]