Question
upstudy study bank question image url

\( a=\sin 16^{\circ}-\sin 216^{\circ} ; \) \( b=\cos 130^{\circ}-\cos 296^{\circ} ; \) \( c=\operatorname{tg} 140^{\circ}-\operatorname{tg} 220^{\circ} \quad \) sonlarining ishoralarini aniqlang. \( \begin{array}{ll}\text { A) }+;+;+ & \mathrm{B})+;-;+ \\ \text { C) }-;-;+ & \mathrm{D})+;-;-\end{array} \)

Ask by Mullins Bernard. in Uzbekistan
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

A) +; +; + B) +; −; + C) −; −; + D) +; −; − Javob: D) +; −; −

Solution

Berilgan ifodalar uchun ishoralarni aniqlash uchun har bir ifodaning qiymatini taxminan hisoblaymiz. 1. **\( a = \sin 16^{\circ} - \sin 216^{\circ} \)** \[ \sin 16^{\circ} \approx 0.2756 \] \[ \sin 216^{\circ} = \sin (180^{\circ} + 36^{\circ}) = -\sin 36^{\circ} \approx -0.5878 \] Shunday qilib: \[ a \approx 0.2756 - (-0.5878) = 0.2756 + 0.5878 = 0.8634 \] **\(a > 0\)** 2. **\( b = \cos 130^{\circ} - \cos 296^{\circ} \)** \[ \cos 130^{\circ} = \cos (180^{\circ} - 50^{\circ}) = -\cos 50^{\circ} \approx -0.6428 \] \[ \cos 296^{\circ} = \cos (360^{\circ} - 64^{\circ}) = \cos 64^{\circ} \approx 0.4384 \] Shunday qilib: \[ b \approx -0.6428 - 0.4384 = -1.0812 \] **\(b < 0\)** 3. **\( c = \tan 140^{\circ} - \tan 220^{\circ} \)** \[ \tan 140^{\circ} = \tan (180^{\circ} - 40^{\circ}) = -\tan 40^{\circ} \approx -0.8391 \] \[ \tan 220^{\circ} = \tan (180^{\circ} + 40^{\circ}) = \tan 40^{\circ} \approx 0.8391 \] Shunday qilib: \[ c \approx -0.8391 - 0.8391 = -1.6782 \] **\(c < 0\)** **Xulosa:** - \( a > 0 \) - \( b < 0 \) - \( c < 0 \) To'g'ri javob: **D) +; −; −**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Haqiqatan da, bu trigonometric ifodalar vahid zanjirda haqiqiy qiymatlarni bilish orqali simplistik chiqishni ta’minlashi mumkin. Masalan, sinus funktsiyalari oddiy xorijiy burchaklar, zaryadlarni boshqarishda ishlatiladi. \( \sin(216^{\circ}) = \sin(180^{\circ}+36^{\circ}) = -\sin(36^{\circ}) \) bo‘lganingiz bois, \( a = \sin(16^{\circ}) + \sin(36^{\circ}) \) chiqadi va bu chiqish musbat qiymatni beradi. Shuni unutmaslik kerakki, trigonometrik funktsiyalarda burchaklar bilan bog‘liq xatoliklar oson kelib chiqishi mumkin. Masalan, kosinusning to'g'ri burchaklardan foydalanishdagi noaniqliklar natijada yangilanishga sabab bo’ladi. \( \cos(130^{\circ}) = -\cos(50^{\circ}) \) va \( \cos(296^{\circ}) = \cos(64^{\circ}) \) olib keladi; natijada \( b \) ijobiy ko'rinish hosil qiladi. Xulosa qilib aytganda, har bir ifoda alohida ko‘rib chiqilishi va o‘rganilishi kerak!

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy