hiziqli tenglamalar sistemasini Gauss usulida yeching \[ \left\{\begin{array}{l}x_{1}+2 x_{2}-x_{3}=4 \\ 3 x_{1}+2 x_{3}=-8 \\ 4 x_{1}-2 x_{2}+5 x_{3}=0\end{array}\right. \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Bu tenglamalar sistemasini Gauss usuli yordamida yechish uchun, dastlab kengaytirilgan matritsa tuzishimiz kerak: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 3 & 0 & 2 & | & -8 \\ 4 & -2 & 5 & | & 0 \end{pmatrix} \] Birinchi qatorni o'zgartirishdan boshlaymiz. Birinchi qatordagi 1 ni 3-qator va 2-qator boyicha 0 ga aylantirish uchun, birinchi qatorni 3 marta ikkinchi qatordan ayiramiz. Natijada, 0 ni olish uchun 3 marta birinchi qatorni ikkinchiga qo'shamiz: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & -6 & 5 & | & -20 \\ 4 & -2 & 5 & | & 0 \end{pmatrix} \] Keyin 3-qatordagi 4 ni 1 ga aylantirish uchun, 1-qatori 4 marta 3-qatordan ayiramiz: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & -6 & 5 & | & -20 \\ 0 & -10 & 9 & | & -16 \end{pmatrix} \] Keling, endi 2-qatorni 1 ga kamaytirmoqchimiz. 2-qatorda -6 ni 1 ga aylantirish uchun 2-qatorni -1/6 ga bo'lamiz: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & 1 & -\frac{5}{6} & | & \frac{10}{3} \\ 0 & -10 & 9 & | & -16 \end{pmatrix} \] Endi, 3-qatorda 10 ni 0 ga aylantirish uchun, 2-qatorni 10 marta qo'shamiz: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & 1 & -\frac{5}{6} & | & \frac{10}{3} \\ 0 & 0 & -\frac{1}{3} & | & -\frac{44}{3} \end{pmatrix} \] Yana 3-qatorda -1/3 ni 1 ga aylantirish uchun, 3-qatorni 1 ga bo'lamiz: \[ \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & 1 & -\frac{5}{6} & | & \frac{10}{3} \\ 0 & 0 & 1 & | & 44 \end{pmatrix} \] Endi yuqori qatorlarga qaytib, x3 ni topamiz va keyin x2 va x1 ni hisoblaymiz. Natija: \(x_3 = -44\), \(x_2 = -36\), \(x_1 = 28\). Natijada yechim: \[ x_1 = 28, \quad x_2 = -36, \quad x_3 = -44 \]